Supporting Information

Mixing the Immiscible: Blends of Dynamic Polymer Networks

Roberto Martin,^a Alaitz Rekondo,^a Alaitz Ruiz de Luzuriaga,^a Antxon Santamaria,^b and Ibon Odriozola^{*,a}

^aMaterials Division, IK4-CIDETEC Research Center, Paseo Miramón 196, 20009 Donostia-San Sebastián, Spain

^bPolymer Science & Technology Department and POLYMAT, Faculty of Chemistry, University of Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain

Table of Contents

Materials	2
Methods	2
Synthesis of PUU elastomer	2
Synthesis of Si-Putty	2
Figure S1. FTIR spectrum of Si-Putty	3
Synthesis of DNBs	3
Figure S2. FTIR spectrum of DNB ₇₅	4
Figure S3. FTIR spectrum of DNB ₅₀	4
Figure S4. FTIR spectrum of DNB ₂₅	5
Rheology of Si-Putty and PUU	5
Figure S5. Viscoelastic results at T = 25 °C. Elastic, G', and viscous, G'', modulus for Si-Putt	у.
Figure S6. Storage (G') and loss (G'') modulus (Pa) vs. frequency extrapolated master curve for Si-Putty.	r 6
Figure S7. Viscoelastic results at $T = 25$ °C. Elastic, G', and viscous, G'', modulus for PUU	U.

Materials

Hydroxyl-terminated polydimethylsiloxane (PDMS, 750 cst) and boric acid (99.8%) were purchased from Sigma-Aldrich and were used as received.

Methods

Fourier transform infrared (FTIR) spectra were registered in a Jasco FT/IR 4100 spectrophotometer, using a Gladi ATR accessory and collecting 32 scans at a resolution of 4 cm⁻¹.

Rheological testing was carried out in a TA instruments AR2000ex rheometer using a 25 mm plate-plate geometry on 1 mm thick samples.

Mechanical testing was performed using an INSTRON 3365 Long travel Elastomeric Extensometer controlled by Bluehill Lite software. Tensile strength measurements were carried out according to UNE-EN-ISO 527 standard, using dump-bell type test specimens and an elongation rate of 500 mm min⁻¹.

Hardness measurements of all the blends and pristine materials were performed using a normalized Shore A durometer.

Synthesis of PUU elastomer

Molecular characteristics and preparation of the PUU elastomer used in this work have been previously described by our group.¹

Synthesis of Si-Putty

Si-Putty was prepared in a 50 mL Haake Polylab internal mixer previously heated at 200 °C. PDMS 750 cst (49.5 g) and boric acid (0.5 g) were added into the internal mixer while the rotors were rotating at 30 rpm. In a few seconds, the boric acid was melted and a putty was formed. The material was mixed for further 45 minutes in order to ensure a good homogenization, and the resulting **Si-Putty** was characterized by FTIR (see Figure S1). Yield: 48.3 g, 96.6%. FTIR (ATR, cm⁻¹): v = 2962 (stretching CH₃), 1257 (CH₃ symmetric bending), 1077 and 1007 (stretching Si-O-Si), 786 (Si-CH₃ rocking).

¹ a) A. Rekondo, R. Martin, A. Ruiz de Luzuriaga, G. Cabañero, H. J. Grande, I. Odriozola, *Mater. Horiz.*, 2014, **1**, 237-240, b) R. Martin, A. Rekondo, A. Ruiz de Luzuriaga, G. Cabañero, H. J. Grande, I. Odriozola, *J. Mater. Chem. A*, 2014, **2**, 5710-5715.

Figure S1. FTIR spectrum of Si-Putty.

Synthesis of DNBs

The three different DDNs using different **PUU/Si-Putty** ratios (75/25, 50/50 and 25/75 wt%) were prepared in a 50 mL Haake Polylab internal mixer. For the preparation of 50 g of each blend, **PUU** and **Si-Putty** were fed into the internal mixer at room temperature while the rotors were rotating at 30 rpm. Then the internal mixer was heated to 150 °C and the blends were mixed for 1 hour at 150 °C. The resulting homogeneous materials were placed in a 2 mm thick square mold and hot-pressed at 150 °C for 10 minutes, to obtain the materials in the form of sheets. All the blends were characterized by FTIR (see Figures S2-S4).

Figure S3. FTIR spectrum of DNB₅₀.

Figure S4. FTIR spectrum of DNB₂₅.

Rheology of Si-Putty and PUU

Dynamic viscoelastic results at T = 25 °C. Dependence of both G' and G'' on frequency determined for Si-Putty.

Figure S5. Viscoelastic results at T = 25 °C. Elastic, G', and viscous, G'', modulus for Si-Putty.

Master curve of Si-Putty

Master curves of elastic modulus G' (red) and viscous modulus G'' (black) at Tr = 25 °C for Si-Putty, were built from frequency scans at different temperatures in the range 25–60 °C, under linear conditions. Viscoelastic models indicate that a relaxation time can be obtained from the frequency ω_x at the crossing point G' = G'': $\tau = 1/\omega_x$

Figure S6. Storage (G') and loss (G'') modulus (Pa) vs. frequency extrapolated master curve for Si-Putty.

Rheology of PUU

Dynamic viscoelastic results at T = 25 °C. Dependence of both G' and G'' on frequency determined for PUU.

Figure S7. Viscoelastic results at T = 25 °C. Elastic, G', and viscous, G'', modulus for PUU.