Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information (ESI)

Roles of both amines and acid in supramolecular hydrogel formation of tetracarboxyl acids-appended calix[4]arene gelator

HeeKyoung Choi, Ji Ha Lee and Jong Hwa Jung

Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 660-701, Korea.

E-mail: jonghwa@gnu.ac.kr

Fig. S1 FT IR spectra of 1 (a) without and with (b) 1.0, (c) 2.0, (d) 3.0 and (e) 4.0 equivalents of diaminobutane.

Fig. S2 FT IR spectra of 1 (a) without and with (b) 1.0, (c) 2.0, (d) 3.0 and (e) 4.0 equivalents of monoaminobutane.

Fig. S3 FT IR spectra of **1** without (a) and with (b-e) diaminobutane (b: 1 equiv., c: 2 equiv., d: 3 equiv. and e: 4 equiv.) in the presence of HCl (2 equiv.).

Fig. S4 Photographs of (a) **1**, (b) **1**+DABCO (4 equiv.), (c) **1**+DABCO (4 equiv.)+HCl (2 equiv.), (d) **1**+N,N'-dimethylppiperazine (4 equiv.), (e) **1**+N,N'-dimethylppiperazine (4 equiv.)+HCl (2 equiv.), (f) **1**+TMEA (4 equiv.) and (g) **1**+TMEA (4 equiv.)+HCl (2 equiv.).

Fig. S5 FT IR spectra of (a) **1**, (b) **1**+DABCO (4 equiv.)+HCl (2 equiv), (c) **1**+N,N'-dimethylppiperazine (4 equiv.)+HCl (2 equiv.) and (d) **1**+TMEA (4 equiv.)+HCl (2 equiv.).

Fig. S6 DSC thermograms of (a) 1+diaminobutane (1 equiv.)+HCl (2 equiv.), (b) 1+diaminobutane (2 equiv.)+HCl (2 equiv.), (c) 1+diaminobutane (3 equiv.)+HCl (2 equiv.) and (d) 1+diaminobutane (4 equiv.)+HCl (2 equiv.).

Fig. S7 DSC thermograms of (a) **1**+monoaminobutane (1 equiv.)+HCl (2 equiv.), (b) **1**+monoaminobutane (2 equiv.)+HCl (2 equiv.), (c) **1**+monoaminobutane (3 equiv.)+HCl (2 equiv.) and (d) **1**+monoaminobutane (4 equiv.)+HCl (2 equiv.).

Fig. S8 CD spectra of (a) 1+diaminobutane (1 equiv.)+HCl (2 equiv.), (b) 1+ diaminobutane (2 equiv.)+HCl (2 equiv.), (c) 1+ diaminobutane (3 equiv.)+HCl (2 equiv.), (d) 1+ diaminobutane (4 equiv.)+HCl (2 equiv.).

Fig. S9 SEM images of (a) 1+diaminobutane (2 equiv.)+HCl (2 equiv.), (b) 1+ diaminobutane (3 equiv.)+HCl (2 equiv.), (c) 1+ monoaminobutane (2 equiv.)+HCl (2 equiv.), (d) 1+ monoaminobutane (3 equiv.)+HCl (2 equiv.), (e) 1+ DABCO (2 equiv.)+HCl (2 equiv.) and (f) 1+ DABCO (3 equiv.)+HCl (2 equiv.).

Fig. S10 Rheological data. (A) hydrogel **1** with diaminobutane (4 equiv.) and HCl (2 equiv.), (B) hydrogel **1** with monoaminobutane (4 equiv.) and HCl (2 equiv.) and (C) hydrogel **1** with DABCO (4 equiv.) and HCl (2 equiv.). (a) Frequency dependences of elastic modulus (red line; G') and viscous modulus (black line, G"), (b) Strain dependence of elastic modulus (red line; G') and viscous modulus (black line, G") at a frequency of 1 rads⁻¹ and (c) time dependence of elastic modulus (red line; G') and viscous modulus (red line; G') and viscous modulus (black line, G") at a frequency of 1 rads⁻¹ and (c) time dependence of elastic modulus (red line; G') and viscous modulus (red line; G') and viscous modulus (black line, G") at the heating rate of 1 °C min⁻¹, strain of 0.1 % and frequency of 1 rad s⁻¹.

diaminobutane	Sol 1	
	COO-	соон
0 equiv.	22 %	78 %
1 equiv.	48 %	52 %
2 equiv.	100 %	0
3 equiv.	100 %	0
4 equiv.	100 %	0

Table S1. Amount of -COOH and COO^- species of 1 in the different concentration of diaminobutane.

Table S2. Amount of -COOH and COO^{-} species of 1 in the different concentration of monoaminobutane.

monoaminobutane	Sol 1	
	COO-	СООН
0 equiv.	22 %	78 %
1 equiv.	27 %	73 %
2 equiv.	35 %	65 %
3 equiv.	100 %	0
4 equiv.	100 %	0

DABCO	Sol 1		
	COO-	соон	
0 equiv.	22 %	78 %	
1 equiv.	52 %	48 %	
2 equiv.	100 %	0	
3 equiv.	100 %	0	
4 equiv.	100 %	0	

Table S3. Amount of -COOH and COO⁻ species of 1 in the different concentration of DABCO.