Supporting information:

Highly flexible transparent conductive graphene /single-walled carbon nanotube nanocomposite films produced by Langmuir–Blodgett 5 assembly

Tan Yang, "Junhe Yang, *a Lifang Shi," Edith Mäder, band Qingbin Zheng, *a,b

^aSchool of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China. Tel.: 86-21-55274065
10 E-mail address: qingbin.zheng@family.ust.hk (Q.B. Zheng), jhyang@usst.edu.cn (J.H. Yang)

^bLeibniz-Institut für Polymerforschung Dresden, Hohe Straße 6, 01069 Dresden, Germany. Tel.: 49-0351-4658486

15

20

25

Fig. S2 (a) UV - vis spectra of UL-GO dispersed in water at varied concentrations. (b) Absorption at the peak as a function of the concentration of UL-GO.

Fig. S4 Isotherm plots of three sequential compression/expansion cycles, confirming highly reversible and stable SWCNT monolayer against compression. The three curves essentially overlap on top of 5 another over the whole area.

Table S1 Relative percentages of carbon and assignations of UL-GO/SWCNT and rUL-GO/SWCNT.

Binding energy and	$C-Csp^2$	C=Csp ³	C-0	-C=O	-O-C=O
assignation	~284.8 eV	~285.6 eV	~286.6 eV	~287.8 eV	~290.3 eV
UL-GO/SWCNT	30.12%	20.51%	29.49%	17.69%	2,29%
HI-rUL-GO/SWCNT	51.95%	19.10%	13.10%	12.73%	1.92%

Fig. S5 (a) Raman spectra for natural graphite, EG and UL-GO. (b) Raman spectra for pure SWCNT 5 and COOH-functionalized SWCNTs.

Fabrication Method	Graphene Type	Sheet Resistance (Ω/sq)	Transmittance (%)	$\sigma_{\scriptscriptstyle DC}/\sigma_{\scriptscriptstyle OP}$	Reference
L-B assembly	Hybrid films with SWCNTs	8100	90	0.443	Current work
	Expandable graphite exfoliated With DMF	1.5x10 ⁵	92	0.03	Li <i>et al.</i> ¹ Nature Nanotechnol. 2008, 3, 538
	High temperature annealing	4.0x10 ⁶	95	0.0018	Kim <i>et al.</i> ² Adv. Mater. 2010 22 1954
	High temperature annealing	6848	82	0.27	Wang <i>et al.</i> ³ Carbon
Transfer printing	Chemical reduction	3.0x10 ⁴	80	0.05	Nanotechnology 2009, 20, 465605
	Chemical Reduction+ High temperature annealing	1.0x10 ⁵	65	0.008	Eda <i>et al.</i> ⁵ Nature Nanotechnol. 2008, 3, 270
	Chemical Reduction+ High temperature annealing	7.0x10 ⁴	65	0.011	Eda <i>et al.</i> ⁶ APL 2008, 92, 233305
Spin coating	High temperature annealing	5000	80	0.32	Wu <i>et al.</i> ⁷ APL 2008, 92, 263302
	High temperature annealing	1750	70	0.55	Liang <i>et al.</i> ⁸ Nanotechnology , 2009, 20, 13 434007
Dip coating	Chemical reduction	1.1x10 ⁴	87	0.23	Zhu <i>et al.</i> ⁹ APL 2009, 95, 103104
	High temperature annealing	1800	70	0.54	Wang <i>et al.</i> ¹⁰ Nano Lett. 2008, 8.323
	High temperature annealing	8000	70	0.12	Zhao <i>et al.</i> ¹¹ Electrochimica Acta, 2009, 55, 491
	Chemical Reduction+ High temperature annealing	11x10 ⁶	95	0.0007	Kim <i>et al.</i> ¹² Langmuir, 2009, 25, 11302

 Table S2 Comparison of opto-electrical properties for TCFs made by solution based methods.

References

- X. L. Li, G. Y. Zhang, X. D. Bai, X. M. Sun, X. R. Wang, E. Wang and H. J. Dai, *Nat Nanotechnol*, 2008, **3**, 538-542.
- 2. F. Kim, L. J. Cote and J. X. Huang, *Adv Mater*, 2010, **22**, 1954-1958.
- 5 3. S. J. Wang, Y. Geng, Q. B. Zheng and J. K. Kim, *Carbon*, 2010, 48, 1815-1823.
- 4. Y. Q. Liu, L. Gao, J. Sun, Y. Wang and J. Zhang, *Nanotechnology*, 2009, **20**, 465605.
- 5. G. Eda, G. Fanchini and M. Chhowalla, *Nat Nanotechnol*, 2008, **3**, 270-274.
- G. Eda, Y. Y. Lin, S. Miller, C. W. Chen, W. F. Su and M. Chhowalla, *Appl Phys Lett*, 2008, 92, 233305.
- J. B. Wu, H. A. Becerril, Z. N. Bao, Z. F. Liu, Y. S. Chen and P. Peumans, *Appl Phys Lett*, 2008, 92, 263302.
 - Y. Y. Liang, J. Frisch, L. J. Zhi, H. Norouzi-Arasi, X. L. Feng, J. P. Rabe, N. Koch and K. Mullen, *Nanotechnology*, 2009, 20, 434007.
 - 9. Y. W. Zhu, W. W. Cai, R. D. Piner, A. Velamakanni and R. S. Ruoff, *Appl Phys Lett*, 2009, 95.
- 15 10. X. Wang, L. J. Zhi and K. Mullen, *Nano Lett*, 2008, **8**, 323-327.
 - L. Zhao, L. Zhao, Y. X. Xu, T. F. Qiu, L. J. Zhi and G. Q. Shi, *Electrochim Acta*, 2009, 55, 491-497.
 - 12. Y. K. Kim and D. H. Min, *Langmuir*, 2009, **25**, 11302-11306.