Supplementary Information

Role of Acid Sites and Surface Hydroxyl Groups in Isophthalonitrile

Hydrogenation Catalyzed by Supported Ni-Co Catalysts

Chang Liu, Ruijun Hou, Tiefeng Wang*

Beijing Key Laboratory of Green Reaction Engineering and Technology

Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China

*Corresponding author: 86-10-62794132, wangtf@tsinghua.edu.cn

	Reaction results ^a	
Catalyst	$k_{\rm r}(10^{-2}{\rm mol}^{0.2}{ m L}^{-0.2}{ m min}^{-1})$	$k_{\rm r}(10^{-2}{\rm min^{-1}})$
	<i>р</i> =0.8 ^b	<i>p</i> =1 ^b
2.5Ni-0.625Co/Al ₂ O ₃	0.6 (0.99)	0.9 (0.98)
5Ni-1.25Co/Al ₂ O ₃	2.1 (0.99)	3.6 (0.89)
10Ni-2.5Co/Al ₂ O ₃	2.4 (0.99)	4.2 (0.96)
20Ni-5Co/Al ₂ O ₃	2.8 (0.99)	5.9 (0.93)

Table S1. Comparison of the calculation results of k_r over xNi-yCo/Al₂O₃ using two models

^a Reaction conditions: 80 °C, 6.0 MPa, catalyst of 200~400 μ m containing 0.25g Ni and 0.0625g Co, 80 mL of toluene and 20 mL of methanol as solvent, 2.9 g of IPN feed, 0.086 g of NaOH, 180 mL min⁻¹ H₂ gas flow, and stirring speed of 800 rpm.

^b The numbers in brackets are the corresponding R².

Fig. S1. SEM images of (a) 20Ni-5Co/SiO₂, (b) 20Ni-5Co/Al₂O₃(SI)

Fig. S2. NH₃-TPD profiles of *γ*-Al₂O₃ supported catalysts and the support

Fig. S3. FT-IR spectra of pyridine adsorbed on p-Al₂O₃ and 5Ni-1.25Co/Al₂O₃ at 200 °C (after background correction). The bands at 1450 cm⁻¹ are the characteristic peaks of Lewis (PyL) acid sites, and those at 1490 cm⁻¹ were the characteristic peaks of p-Al₂O₃.

Fig. S4. Fitting results of k_r over 20Ni-5Co/Al₂O₃ with reaction order of p = 0.8 and 1.0

Fig. S5. TG-DTA profiles of the treated and untreated SiO_2 SiO₂-400 and SiO₂-600 were the SiO₂ samples calcined at 400 °C and 600 °C for 4 h, respectively.

Fig. S6. TG-DTA results of the spent catalysts: (a) 20Ni-5Co/Al₂O₃(SI), (b) 2.5Ni-0.625Co/Al₂O₃, (c) 20Ni-5Co/SiO₂(SI), (d) 2.5Ni-0.625Co/SiO₂