Supplementary Data

Protonated mesoporous graphitic carbon nitride for rapid

and high efficient removal of microcystins

Chuanhui Huang^a, Wenmin Zhang^a, Zhiming Yan^a, Jia Gao^a, Wei Liu^{a,b}, Ping Tong^{a,b*}, Lan Zhang^{a,b*}

^a Ministry of Education Key Laboratory of Analysis and Detection for Food Safety,

Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food

Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China

^b Testing Center, The Sport Science Research Center, Fuzhou University, Fuzhou,

Fujian, 350002, China

• **Corresponding author:** Lan Zhang

• Postal address: College of Chemistry, Fuzhou University,

Fuzhou, Fujian, 350116, China

- Tel: 86-591-22866135
- Fax: 86-591-22866135
- E-mail: zlan@fzu.edu.cn (L. Zhang)

Fig. S1. Chemical structure of microcystins; (A) MC-LR; (B) MC-RR.

Fig. S2. FT-IR spectra.

Fig. S3. SEM images of the bulk $g-C_3N_4$.

Fig. S4. Zeta potential of the adsorbent (0.15 mg/mL) at 30 °C.

		Pseudo-first-order kinetic model			
	<i>C</i> ₀ /(ppb)	$q_{e\ (cal)}$ / (ug/g)	k ₁ /(/min)	R ²	
MC-LR	50	26.59	2.59E-03	0.6450	
	100	76.68	2.54E-03	0.7797	
	200	91.19	3.31E-03	0.6618	
MC-RR	50	0.67	5.43E-03	0.3172	
	100	36.40	2.18E-03	0.1562	
	200	132.72	2.54E-03	0.2106	

Table S1. Kinetic parameters for adsorption of MCs on mpg-C₃N₄-H⁺ at 30 °C.

Fig. S5. SEM images of the recycled mpg- C_3N_4 -H⁺.

Fig. S6. Intraparticle diffusion plot for the adsorption of MCs on mpg-C₃N₄-H⁺ (0.1mg) with different initial concentrations of MCs at 30 °C; pH 7.0.

Fig. S7. (a) Langmuir plots of the isotherms; (b) Langmuir plots of the isotherms; (c) Freundlich plots of the isotherms; (d) Freundlich plots of the isotherms.

Fig. S8. Van't Hoff plot of the Langmuir constants b as a function of temperature, used to calculate the ΔH and ΔS of the MCs adsorption over mpg-C₃N₄-H⁺.

	Adsorbent	Q _{max} (MC-LR)	Q _{max} (MC-RR)	Reference
-	Ordered mesoporous carbons	526 mg/g	a	S1
	magnetic mesoporous carbon	220 mg/g	180 mg/g	S2
	carbon nanotubes	14.8 mg/g	5.9 mg/g	S3
	MIL-100(Al) gels	9007 µg/g	a	S4
	$mpg-C_3N_4-H^+$	2360.96 µg/g	2868.78 μg/g	this work
	Graphene oxide	1700 µg/g	1878 µg/g	S5
	commercial activated carbon	1481.7 μg/g	1034.1µg/g	S5
	Fe ₃ O ₄ @copper silicate nanotube	500 µg/g	a	S 6
	peat	255.7 μg/g	a	S 7
	Cu ²⁺ -immobilized magnetite nanoparticles	60 µg/g	a	S8

Table S2. Maximum adsorption capacity of MCs on various adsorbents

—a, not determined.

References

- S1. W. Teng, Z. Wu, J. Fan, H. Chen, D. Feng, Y. Lv, J. Wang, A. M. Asiri and D. Zhao, *Energy & Environmental Science*, 2013, 6, 2765-2776.
- S2. X. Zhang and L. Jiang, Journal of Materials Chemistry, 2011, 21, 10653-10657.
- S3. H. Yan, A. Gong, H. He, J. Zhou, Y. Wei and L. Lv, *Chemosphere*, 2006, 62, 142-148.
- S4. W. Xia, X. Zhang, L. Xu, Y. Wang, J. Lin and R. Zou, *RSC Advances*, 2013, 3, 11007-11013.
- S5. S. Pavagadhi, A. L. L. Tang, M. Sathishkumar, K. P. Loh and R. Balasubramanian, *water research*, 2013, 47, 4621-4629.
- S6. H. Chen, X. Lu, C. Deng and X. Yan, *The Journal of Physical Chemistry C*, 2009, 113, 21068-21073.
- S7. M. Sathishkumar, S. Pavagadhi, K. Vijayaraghavan, R. Balasubramanian and S. Ong, *Journal of hazardous materials*, 2010, 184, 417-424.
- S8. M. Gao, C. Deng, Z. Fan, N. Yao, X. Xu, P. Yang and X. Zhang, *Small*, 2007, 3, 1714-1717.