Supporting Information

Creation of Hollow Microtubular Iron Oxalate Dihydrate Induced by a Metallo-Supramolecular Micelle Based on the Self-assembly of Potassium Ferrioxalate and Sodium Dodecyl Sulphate

Yue Teng^a, Le Xin Song^{*,a,b}, Wei Liu^{*,a}, Juan Xia^a, Li Zhao^b, Qing Shan Wang^b, Mao Mao Ruan^b

 ^a CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Jin Zhai Road 96, Hefei, China 230026
^b Department of Chemistry, University of Science and Technology of China, Jin Zhai Road 96, Hefei, China 230026

Email: <u>solexin@ustc.edu.cn</u>; <u>wliu@ustc.edu.cn</u>;

Fax: +86-551-63601592

Pages	Contents
1	A table of contents.
2	Experimental Section
3	The κ values of the solutions of PF in the absence and presence of SDS at 293 K.
4	The transparent solution obtained in the hydrothermal porcesses of PF (5.00×10^{-3} mol dm ⁻³) in the presence of SDS (8.68×10^{-2} mol dm ⁻³).
5	Powder XRD patterns of the Fe ₂ O ₃ obtained in the hydrothermal porcesses of PF $(2.50 \times 10^{-2} \text{ mol dm}^{-3})$ in the presence of $8.68 \times 10^{-2} \text{ mol dm}^{-3}$ <i>n</i> -octane, hexadecyl trimethyl ammonium bromide, sodium dodecylbenzenesulfonate, sodium sulfate and sodium sulfite instead of SDS.
6	The TG and DTG profiles of the IOD-1 crystals.
7	Powder XRD pattern and SEM image of IOD-3.
8	DLS curves of the PF-SDS-SM in the solutions of SDS ($8.68 \times 10^{-2} \text{ mol dm}^{-3}$) in the presence of PF ($2.50 \times 10^{-2} \text{ mol dm}^{-3}$, a; and $5.00 \times 10^{-2} \text{ mol dm}^{-3}$, b).
9	SEM image of the IOD-1 before removal of SDS micelles.

A list of the contents for all the Supporting Information

Experimental Section

Materials: Sodium dodecyl sulphate (SDS) and potassium ferrioxalate (PF) were obtained from Shanghai Chemical Reagent.

Synthesis of metallosurfactants of PF and SDS: 0.5 g PF was dissolved in 40 mL of H₂O at 298 K, and then 1.0 g of SDS was dissolved in the PF solution, generating a mixed solution of PF and SDS. A series of solutions composed of PF and SDS were also prepared using the same method but with different initial masses.

Hydrothermal experiments: A solution with $8.68 \times 10^{-2} \text{ mol dm}^{-3}$ SDS and $2.50 \times 10^{-2} \text{ mol dm}^{-3}$ PF was completely transferred into a 50 mL sealed stainless steel autoclave and heated to 473 K for 4 h. Fine blond tube-like crystals (FeC₂O₄ 2H₂O, 0.14 g, 76%) were collected by filtration, washed several times with distilled water and ethanol, and dried in vacuum. The synthesis is repeated but with other two concentrations, giving either a reddish-brown powder for 8.68×10^{-3} mol dm⁻³ SDS or no precipitation for 5.0×10^{-3} mol dm⁻³ PF.

Characterization: Field emission scanning electron microscopy (FESEM, Supra 40) has been used to produce the structural information. In addition, the crystallinity of the samples was determined by the powder X-ray diffraction pattern (XRD) (Philips X'Pert Pro X-ray diffractometer) using a monochromatized Cu K α radiation source (40 kV, 40 mA) with a wavelength of 0.1542 nm and analyzed in the range $10^{\circ} \le 2\theta \le 80^{\circ}$. Thermogravimetry and derivative thermogravimetry (TG/DTG) measurements were determined on a TGA-50 thermogravimetric analyzer at a constant heating rate of 10.0 K min⁻¹ in air. The hydrodynamic radius of the micelles was obtained on a DynaPro-MS800 dynamic light scattering (DLS) instrument (Protein Solution, Lakewood, NJ) equipped with a thermostatic sample chamber.

Conductivity measurements: A Leici DDSJ-308 conductivity meter with automatic temperature compensation and automatic calibration was used to record the conductivity of solutions at 298 K. A conductance cell with a cell constant of 0.984 cm^{-1} was used in a water bath whose temperature was kept at 298 K.

Fig. S1 The κ values of the solutions of PF in the absence and presence of SDS (C_{SDS} , 8.68 × 10⁻² mol dm⁻³; C_{PF} , 0~ 7.60 × 10⁻² mol dm⁻³). The κ was calculated as an average of three repeated measurements at 293 K.

Fig. S2 The transparent solution obtained in the hydrothermal porcesses of PF $(5.00 \times 10^{-3} \text{ mol dm}^{-3})$ in the presence of SDS $(8.68 \times 10^{-2} \text{ mol dm}^{-3})$.

Fig. S3 Powder XRD patterns of the Fe₂O₃ obtained in the hydrothermal porcesses of PF $(2.50 \times 10^{-2} \text{ mol dm}^{-3})$ in the presence of *n*-octane (a), hexadecyl trimethyl ammonium bromide (b), sodium dodecylbenzenesulfonate (c), sodium sulfate (d) and sodium sulfite (e) with the concentration of $8.68 \times 10^{-2} \text{ mol dm}^{-3}$.

The thermogravimetric and differential thermogravimetric profiles (Figure S4) of the crystal tubes in air show a two-step degradation process. The first degradation occurred at 445 K with a weight loss of 19.3%, corresponding to the release of two water molecules, which agrees well with the calculated value of 19.0% in IOD. The second degradation occurred at 657 K with a final residual mass of 46.6% due to the Fe_2O_3 (calculated value of 46.5%) resulted from the oxidation of IOD.

Fig. S4 The TG and DTG profiles of the IOD-1 crystals.

M. Hermanek, R. Zboril, M. Mashlan, L. Machala, O. Schneeweiss, *J. Mater. Chem.*, 2006, 16, 1273. b) C. Cavelius, K. Moh, S. Mathur, *Cryst. Growth. Des.*, 2012, 12, 5948. c) Z. Dang, L. X. Song, J. Yang, J. Chen, Y., Teng, *Dalton T.*, 2012, 41, 3006.

Fig. S5 The powder XRD pattern and SEM image of IOD-3 obtained in the hydrothermal processes of PF $(2.50 \times 10^{-2} \text{ mol dm}^{-3})$ in the presence of SDS $(5.00 \times 10^{-2} \text{ mol dm}^{-3})$. The yellow boxes exhibit the magnified SEM image of one tube.

Fig. S6 DLS curves of the PF-SDS-SM in the solutions of SDS ($8.68 \times 10^{-2} \text{ mol dm}^{-3}$) in the presence of PF ($2.50 \times 10^{-2} \text{ mol dm}^{-3}$, a; and $5.00 \times 10^{-2} \text{ mol dm}^{-3}$, b).

Fig. S7 SEM image of the IOD-1 before removal of SDS micelles. The yellow boxes exhibit magnified cross sections of the tubes. The white bars in the right column refer to $100 \mu m$.