Supporting Materials

Promotion mechanism of CeO₂ addition on the low temperature SCR

reaction over MnO_x/TiO₂: A new insight from the kinetic study

Shangchao Xiong, Yong Liao, Hao Dang, Feihong Qi, Shijian Yang*

School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094 P. R. China

^{*} Corresponding author phone: 86-18-066068302; E-mail: yangshijiangsq@163.com (S. J. Yang).

1. Catalytic test

The ratios of NO_x and NH_3 conversion, the amount of N_2 formed, and N_2O selectivity were calculated using the following equations:

$$NO_{x} \text{ conversion} = \frac{[NO_{x}]_{in} - [NO_{x}]_{out}}{[NO_{x}]_{in}}$$
(S1)

$$NH_{3} \text{ conversion} = \frac{[NH_{3}]_{in} - [NH_{3}]_{out}}{[NH_{3}]_{in}}$$
(S2)

$$N_{2} \text{ formed} = [NO_{x}]_{in} + [NH_{3}]_{in} - [NO_{x}]_{out} - [NH_{3}]_{out} - 2[N_{2}O]_{out}$$
(S3)

$$N_{2}O \text{ selectivity} = \frac{2[N_{2}O]_{out}}{[NH_{3}]_{in} + [NO_{x}]_{in} - [NH_{3}]_{out} - [NO_{x}]_{out}}$$
(S4)

Where, $[NH_3]_{in}$, $[NO_x]_{in}$, $[NH_3]_{out}$, $[NO_x]_{out}$ and $[N_2O]_{out}$ were the concentrations of NH₃ and NO_x (including NO and NO₂) in the inlet, and the concentrations of NH₃, NO_x and N₂O in the outlet, respectively.

2. XPS

XPS spectra of MnO_x/TiO_2 and MnO_x -CeO₂/TiO₂ over the spectral regions of Mn 2p, O 1s, Ti 2p and Ce 3d were shown in Fig. S1. The Mn peaks on MnO_x/TiO_2 mainly centered at 642.4, 641.3 and 640.3 eV (shown in Fig. S1a), which were assigned to Mn^{4+} , Mn^{3+} and Mn^{2+} , respectively. ¹ The O peak mainly centered at about 529.7 and 531.0 eV (shown in Fig. S1b), which were assigned to O in transition metal oxides and -OH. ² The Ti peaks mainly centered at 464.3 and 458.6 eV (shown in Fig. S1c), which were assigned to Ti 2p 1/2 and Ti 2p 3/2 of Ti^{4+.3}

After CeO₂ addition, no obvious changes happened in the Mn, O and Ti spectra regions of MnO_x/TiO_2 (shown in Figs. S1d, e and f). The Ce 3d binding energies of MnO_x -CeO₂/TiO₂ mainly centered at 906.0, 903.3, 900.9, 898.6, 887.1, 885.2 and 881.9 eV (shown in Fig. S1g). The bands at 906.0, 900.9, 898.6, 887.1 and 881.9 eV were attributed to Ce⁴⁺, and the bands at 903.3 and 885.2 eV were assigned to Ce³⁺. ^{4, 5}

3. NH₃ oxidation and NO oxidation

Fig. S3 shows the effect of CeO_2 addition on NO and NH₃ oxidation over MnO_x/TiO_2 . As shown in Fig. S3a, NO oxidation over MnO_x/TiO_2 did not vary after CeO_2 addition. However, NH₃ oxidation over MnO_x/TiO_2 was obviously promoted after CeO_2 addition (shown in Fig. S2b).

Meanwhile, N₂O selectivity of NH₃ oxidation over MnO_x/TiO_2 was slightly higher than that over MnO_x -CeO₂/TiO₂.

References:

1. S. Yang, N. Yan, Y. Guo, D. Wu, H. He, Z. Qu, J. Li, Q. Zhou and J. Jia, *Environ. Sci. Technol.*, 2011, **45**, 1540-1546.

 S. Yang, F. Qi, Y. Liao, S. Xiong, Y. Lan, Y. Fu, W. Shan and J. Li, *Ind. Eng. Chem. Res.*, 2014, 53, 5810-5819.

3. S. Yang, Y. Guo, N. Yan, D. Wu, H. He, Z. Qu, C. Yang, Q. Zhou and J. Jia, *ACS Appl. Mater. Interface.*, 2011, **3**, 209-217.

4. L. Chen, J. H. Li and M. F. Ge, J. Phys. Chem. C, 2009, 113, 21177-21184.

5. S. J. Yang, Y. F. Guo, H. Z. Chang, L. Ma, Y. Peng, Z. Qu, N. Q. Yan, C. Z. Wang and J. H.

Li, Appl. Catal. B-environ, 2013, 136, 19-28.

Fig. S1 XPS spectra of MnO_x/TiO_2 and MnO_x-CeO_2/TiO_2 over the spectral regions of Mn 2p, O 1s, Ce 3d and Ti 2p

Fig. S2 The profiles of (a) NH₃-TPD and (b) NO-TPD of MnO_x/TiO_2 and MnO_x-CeO_2/TiO_2

Fig. S3 Effect on CeO₂ addition on NO (a) and NH₃ oxidation (b) over MnO_x/TiO_2 . Reaction conditions: $[NH_3]/[NO]=500$ ppm, $[O_2]=2\%$, catalyst mass=250 mg, total flow rate=200 mL min⁻¹ and GHSV= 4.8×10^4 cm³ g⁻¹ h⁻¹.