Electronic Supplementary Information (ESI) for RSC Advances.

This journal is © The Royal Society of Chemistry 2015

Enhanced formaldehyde sensing properties of SnO₂ nanorods coupled with Zn₂SnO₄

Xuechun Xiao ^a, Xinxin Xing ^a, Bingqian Han ^a, Dongyang Deng ^a, Xiaoyan Cai ^a, Yude Wang ^{a,b,*}

a Department of Materials Science and Engineering, Yunnan University, 650091 Kunming, People's Republic of China

b Yunnan Province Key Lab of Mico-Nano Materials and Technology, Yunnan University, 650091 Kunming, People's Republic of China

E-mail: ydwang@ynu.edu.cn

* Corresponding Author, Fax: +86-871-65153832; Tel: +86-871-65031124; E-mail: ydwang@ynu.edu.cn (Y.D. Wang)

Figure S1.

- (a) Sketch of the structure of a typical SnO_2 - Zn_2SnO_4 nanocomposites gas sensor;
- (b) Photograph of the gas sensor.

Figure S2. Schematic diagram of testing principle for SnO_2 - Zn_2SnO_4 nanocomposites gas sensors. V_H is heating voltage and R_H is heating resistance.

According to Figure S2, the electrical resistance of sensor can be obtained as following:

$$R = \frac{5 - V_{\rm o}}{V_{\rm o}} \cdot R_{\rm I}$$

where *R* is the resistance of the sensor, R_L is a constant load resistance unchanged with the surrounding gas partial pressure, V_o is the sensor export voltage. The gas response β was defined as the ratio of the electrical resistance in air (R_o) to that in gases (R_g):

$$R_{\rm o} = \frac{5 - (V_{\rm o})_{\rm air}}{(V_{\rm o})_{\rm air}} \cdot R_{\rm L}, \qquad R_{\rm g} = \frac{5 - (V_{\rm o})_{\rm g}}{(V_{\rm o})_{\rm g}} \cdot R_{\rm L}, \qquad \beta = \frac{R_{\rm o}}{R_{\rm g}}$$

where $(V_{o})_{air}$ is the export voltage in air, and $(V_{o})_{gas}$ is in gases.

A schematic diagram of the proposed reaction mechanism of $SnO_2-Zn_2SnO_4$ nanocomposites based sensor to formaldehyde. (a) in air, (b) in formaldehyde.

Samples	SnO ₂		Zn_2SnO_4	Average grain size [§]
	<i>a</i> (Å)	<i>c</i> (Å)	<i>a</i> (Å)	(nm)
SnO ₂	4.740	3.184	_	36.4
SnZn ₅	4.745	3.186	_	34.2
SnZn ₁₅	4.758	3.191	8.618	16.2
SnZn ₂₅	4.759	3.193	8.610	10.7
SnZn ₃₅	4.765	3.197	8.607	9.2
SnZn ₄₅	4.767	3.201	8.601	11.1

Table S1 The lattice constants and average grain size of SnO_2 and $SnZn_x$ composites.

SnO₂ The average lattice constant was calculated from (110), (101), (200), (111), (211), and (220) reflections. JCPDS 41-1445, System: Tetragonal, Lattice: Body-centered, Space group: *P42/mnm*(136), *a*= 4.738 Å, *c*=3.187 Å.

Zn₂SnO₄ The average lattice constant was calculated from (311) and (440) reflections. JCPDS 24-1470, System: Cubic, Space group: $Fd\overline{3}m(227)$, a=8.657 Å.

§ The crystallite size D is deduced from the (101) peak width using Scherrer's equation.