1	Supporting Information
2	
3	
4	Synthesis of Ni/Au/Co Trimetallic Nanoparticles and Their Catalytic Activity for Hydrogen
5	Generation from Alkaline Sodium Borohydride Aqueous Solution
6	
7	Chengpeng Jiao ^a , Zili Huang ^a , Xiaofeng Wang ^a , Haijun Zhang ^{b*} , Lilin Lu ^c , Shaowei Zhang ^b
o 9	^a Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgical Mineral
10	Resources, Wuhan University of Science and Technology, Wuhan 430081, China
11	^b The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and
12	Technology, Wuhan 430081, China
13	^c College of Chemical Engineering and Technology, Wuhan University of Science and Technology,
14	Wuhan 430081, China
15	
16	*Corresponding author;
17	E-mail of the corresponding author:
18	Prof. Haijun Zhang: zhanghaijun@wust.edu.cn;

List	of	contents
------	----	----------

1
Т
-

- 2
- 3 Table S1 Comparison of diffraction peaks of $Ni_{45}Au_{45}Co_{10}$ TNPs with the JCPDS data ([Mⁿ⁺]= 0.66
- 4 mM, R_{NaBH4} =5, R_{PVP} =100).
- 5 Table S2 comparison of catalytic activity of NPs with different composition ($[M^{n+}]= 0.66 \text{ mM}$,
- 6 $R_{\text{NaBH4}}=5, R_{\text{PVP}}=100$).
- 7 Fig. S1 Comparison of XRD patterns of Ni₄₅Au₄₅Co₁₀ TNPs with Ni, Co and Au (Au, JCPDS: 89-
- 8 3697; Co, JCPDS: 15-0806; Ni, JCPDS: 88-2326; [Mⁿ⁺]= 0.66 mM, *R*_{NaBH4}=5, *R*_{PVP}=100).
- 9 Fig. S2 Catalytic activities of first run and repeated batches (2-7) during the long-time activity test
- 10 of Ni₄₅Au₄₅Co₁₀ TNPs ($[M^{n+}]$ = 0.66 mM, R_{NaBH4} =5, R_{PVP} =100).
- 11 Fig. S3 Hydrogen volume of first run and repeated batches (2-7) during the long-time activity test
- 12 of Ni₄₅Au₄₅Co₁₀ TNPs ($[M^{n+}]$ = 0.66 mM, R_{NaBH4} =5, R_{PVP} =100).
- 13 Fig. S4 TEM micrographs of $Ni_{45}Au_{45}Co_{10}$ TNPs before and after seven catalytic runs ([Mⁿ⁺]= 0.66
- 14 mM, R_{NaBH4} =5, R_{PVP} =100).
- 15 Fig. S5 Linear fit of LnK to 1/T of Ni₅₀Au₁₀Co₄₀ catalyst for hydrogen generation from NaBH₄.
- 16 Fig. S6 XPS core level spectra of Au, Co and Ni recorded from $Ni_{50}Au_{10}Co_{40}$ TNPs ([Mⁿ⁺]= 0.66
- 17 mM, R_{NaBH4} =5, R_{PVP} =100).

Table	S 1
-------	------------

Faces	Au/degree	Co/degree	Ni/degree	Peak of Ni ₄₅ Au ₄₅ Co ₁₀ TNPs
111	38.179	44.20	45.50	38.179< 38.42 <44.20 (45.50)
200	44.375	51.52	53.05	44.375< 44.68 < 51.52 (53.05)

NPs w	vith varied	UV-Vis peak	Catalytic activity
com	position	/nm	$/mol-H_2/(h\cdot mol-M)$
	Au	520	150
MNPs	Ni	-	110
	Co	-	80
	Ni ₅₀ Au ₅₀	492	800
BNPs	Co ₅₀ Au ₅₀	492	380
	Ni ₅₀ Co ₅₀	-	80
	Ni ₅₀ Au ₁₀ Co ₄₀	506	790
	Ni ₅₀ Au ₃₀ Co ₂₀	508	760
	Ni ₃₀ Au ₃₀ Co ₄₀	492	530
TNPs	Ni ₃₅ Au ₃₅ Co ₃₀	500	500
	Ni40Au40Co20	501	1030
	Ni ₄₅ Au ₄₅ Co ₁₀	509	1170

Fig. S2

Fig. S4

Fig. S5

Fig. S6

(b**)**