## Chromium oxide coated nickel/yttria-stabilized zirconia electrode

## with heterojunction interface toward electrochemical methane

## reforming

Wentao Qi,<sup>a</sup> Shigang Chen,<sup>a</sup> Yucheng Wu, <sup>a</sup> Kui Xie,<sup>a, b</sup>\*

<sup>a</sup> School of Materials Science and Engineering, Hefei University of Technology, No.193 Tunxi Road, Hefei, Anhui 230009, China.

<sup>b</sup> Fujian Institute of Research on the Structure of Matter, ChineseAcademy of Sciences, 155 Yangqiao Road West, Fuzhou, 350002, China



Fig. S1: The TEM graph of the oxidized  $NiCr_2O_4$  (a1) and (a2).



Fig. S2: SEM and EDS results of the reduced form of  $NiCr_2O_4$ .



Fig. S3: XPS results of O (a) in the oxidized NiCr<sub>2</sub>O<sub>4</sub>;(b) in the reduced NiCr<sub>2</sub>O<sub>4</sub>.



Fig. S4: (a1) and (b1) The dependence of conductivities on temperature of the reduced form of Ni/YSZ and 5%  $Cr_2O_3$ -Ni/YSZ samples; (a2) and (b2) the dependence of the conductivities on oxygen partial pressure of the reduced form of Ni/YSZ and 5%  $Cr_2O_3$ -Ni/YSZ samples at 800 °C.