Colorimetric and optical discrimination of halides by a simple chemosensor

Syed A. Haque^a, Robert L. Bolhofner^a, Bryan M. Wong^{b,*}, and Md. Alamgir Hossain^{a,*}

^aDepartment of Chemistry and Biochemistry, Jackson State University, Jackson, MS 39217, USA

^bDepartment of Chemical & Environmental Engineering and Materials Science & Engineering Program, University of California, Riverside, Riverside, CA 92521, USA *Corresponding authors:

E-mail address: alamgir.hossain@jsums.edu; bryan.wong@ucr.edu

Fax: 601-979-3674; Tel: 601-979-3748

Fig S1: ¹H NMR spectrum of L in CDCl₃

Fig S2: ¹³C NMR spectrum of L in CDCl₃

Fig. S4: Mass spectrum of 1

Fig. S5. IR spectrum of 1.

Fig. S6. Job plot analysis of **1** for the binding of chloride in CH₃CN. The change of the absorbance (ΔI) of **1** was determined from the titration plot as shown in Figure 5b.

Fig. S7. Job plot analysis of 1 for the binding of bromide in CH_3CN . The change of the absorbance (ΔI) of 1 was determined from the titration plot as shown in Figure 5c.

Fig. S8. Job plot analysis of 1 for the binding of iodide in CH_3CN . The change of the absorbance (ΔI) of 1 was determined from the titration plot as shown in Figure 5d.

Fig. S9. Changes in absorbance of 1 (1 x 10^{-4} M) in the presence of one equivalent of different anions in CH₃CN at room temperature.

Fig. S10. Changes in absorption spectra of 1 (1 x 10^{-4} M) with an increasing amount of acetate in CH₃CN. The titration curve is shown in insets.

Fig. S11. Changes in absorption spectra of 1 (1 x 10^{-4} M) with an increasing amount of hydroxide in CH₃CN. The titration curve is shown in insets.

Fig. S12. Changes in absorption spectra of 1 (1 x 10^{-4} M) with an increasing amount of sulfate in CH₃CN. The titration curve is shown in insets.

Fig. S13. Calibration plots using differences in absorbance against halide concentrations: iodide (a), bromide (b), chloride (c) and fluoride (d) in CH_3CN .

Vol.	Anion	Total	[1] M	[Anion] M	[Anion]/	$\Lambda(A_0-A)$			
of 1	added	vol.			[1]				
(µL)	(µL)	(µL)				Br	Cl-	F-	I-
2000	1	2001	1.50e-4	7.4963e-6	0.0500	0.0180	0.0230	0.0010	0.0250
2000	2	2002	1.50e-4	1.4985e-5	0.0999	0.0480	0.0390	0.0150	0.0460
2000	3	2003	1.50e-4	2.2466e-5	0.1498	0.0630	0.0570	0.0320	0.0680
2000	4	2004	1.50e-4	2.9940e-5	0.1996	0.0870	0.0740	0.0510	0.0870
2000	5	2005	1.50e-4	3.7406e-5	0.2494	0.1090	0.0920	0.0680	0.1050
2000	6	2006	1.50e-4	4.4865e-5	0.2991	0.1350	0.1140	0.0870	0.1220
2000	7	2007	1.50e-4	5.2317e-5	0.3488	0.1570	0.1340	0.1030	0.1370
2000	8	2008	1.50e-4	5.9761e-5	0.3984	0.1810	0.1550	0.1210	0.1530
2000	9	2009	1.50e-4	6.7198e-5	0.4480	0.2050	0.1770	0.1400	0.1670
2000	10	2010	1.50e-4	7.4627e-5	0.4975	0.2230	0.1950	0.1590	0.1810
2000	11	2011	1.50e-4	8.2049e-5	0.5470	0.2480	0.2160	0.1760	0.1950
2000	12	2012	1.50e-4	8.9463e-5	0.5964	0.2690	0.2430	0.1950	0.2110
2000	13	2013	1.50e-4	9.6870e-5	0.6458	0.2920	0.2630	0.2120	0.2210
2000	14	2014	1.50e-4	1.0427e-4	0.6951	0.3190	0.2800	0.2230	0.2310
2000	15	2015	1.50e-4	1.1166e-4	0.7444	0.3400	0.2990	0.2460	0.2410
2000	16	2016	1.50e-4	1.1905e-4	0.7937	0.3610	0.3140	0.2670	0.2510
2000	17	2017	1.50e-4	1.2643e-4	0.8428	0.3760	0.3310	0.2800	0.2600
2000	18	2018	1.50e-4	1.3380e-4	0.8920	0.3910	0.3660	0.3010	0.2690
2000	19	2019	1.50e-4	1.4116e-4	0.9411	0.3990	0.3780	0.3210	0.2760
2000	20	2020	1.50e-4	1.4851e-4	0.9901	0.4100	0.3880	0.3310	0.2830

Table S1: Measurement of detection limit of the 1 for halides using UV-vis spectroscopy in 100% acetonitrile.

Table S2: Limit of detection (LOD) was calculated using the linear regression of the calibration curve applying to the equation: $LOD=3\sigma/S$. Where, σ is the standard deviation of the absorbance and S is the slope of the calibration curve.

LOD, (M)
3.01x10 ⁻⁶
5.24x10 ⁻⁶
9.72x10 ⁻⁶
15.6x10 ⁻⁶

Fig. S14. Changes in absorption spectra of 1 (1 x 10^{-4} M) with an increasing amount of fluoride (a), bromide (b), chloride (c) and iodide (d) in 20% water in CH₃CN. The titration curves are shown in insets.

Fig. S15. Calibration plot using difference in absorbance against iodide concentration in 20% water in CH_3CN . Limit of detection for iodide (20% water in Acetonitrile) = 2.09×10^{-5} M

Table S3: Measurement of detection limit of 1 for iodide using UV-vis spectroscopy in 20% water in acetonitrile.

Vol. of	Anion	Total	[1] M	[Iodide]	[Iodide]/[1]	$\Delta(A_0-A)$
1	added	vol.		(M)		
(µL)	(µL)	(µL)				
2000	4	2004	1.50e-4	2.9940e-5	0.1996	0.0040
2000	5	2005	1.50e-4	3.7406e-5	0.2494	0.0080
2000	7	2007	1.50e-4	5.2317e-5	0.3488	0.0100
2000	9	2009	1.50e-4	6.7198e-5	0.4480	0.0140
2000	11	2011	1.50e-4	8.2049e-5	0.5470	0.0180
2000	13	2013	1.50e-4	9.6870e-5	0.6458	0.0200
2000	15	2015	1.50e-4	1.1166e-4	0.7444	0.0230
2000	20	2020	1.50e-4	1.4851e-4	0.9901	0.0280

	Fluoride		Chloride		Bromide		Iodide	
State	E _{abs} /eV	Osc.						
		strength		strength		strength		strength
1	1.4758	0.0030	1.2969	0.0028	1.2512	0.0026	1.2087	0.0023
2	1.4885	0.0031	1.3006	0.0028	1.2536	0.0025	1.2097	0.0023
3	1.9828	0.0001	1.9155	0.0000	1.8621	0.0000	1.8110	0.0000
4	1.9860	0.0001	1.9171	0.0000	1.8638	0.0000	1.8114	0.0000
5	3.4387	0.0000	3.4344	0.0000	3.3370	0.0006	2.7825	0.0003
6	3.4443	0.0000	3.4393	0.0000	3.3379	0.0006	2.7828	0.0003

Table S4. Lowest ten excited states (eV) and oscillator strengths of all complexes