
Supporting Information

Nanoscale Architecture of Bimetallic Hybrid Fe-Au Nanostructures with and without 1,4-Phenylene Diisocyanide Pre-Functionalization

Youngku Sohn,^{a,b} Debabrata Pradhan,^{a,c} Jung-Soo Kang,^a and K. T. Leung^{a,*}

WATLab, and Department of Chemistry University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
Department of Chemistry, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, South Korea.
Materials Science Center, Indian Institute of Technology, Kharagpur, West Bengal 721 302, India.

* Corresponding author e-mail: tong@uwaterloo.ca

Figure S1: I-t curves of bare and PDI-functionalized Au NITs in a blank deionized water at a potential of -3.0 V (Figure 1, Samples A1 and A2, respectively), and Fe electrodeposition on bare Si, bare Au NIT, and PDI-functionalized Au NIT.

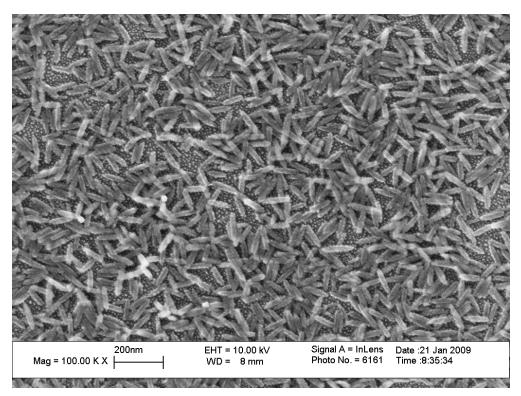


Figure S2a: SEM image of Fe NrPs electrodeposited on PDI-functionalized Au NIs.

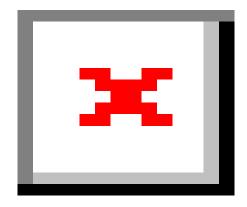


Figure S2b: Back-scattered electron image of Fe NrPs electrodeposited on bare Au NIs.

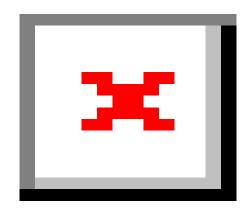


Figure S3a: SEM image of Fe NrPs electrodeposited on a bare Si substrate.

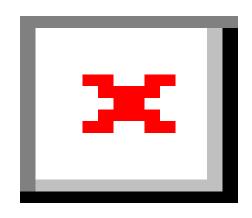


Figure S3b: SEM image of Fe NrPs electrodeposited on a bare Au NI template.

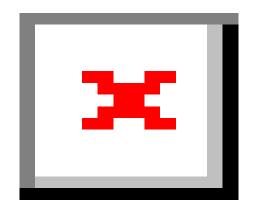


Figure S3c: SEM image of Fe NrP electrodeposited on PDI-functionalized Au NIs.

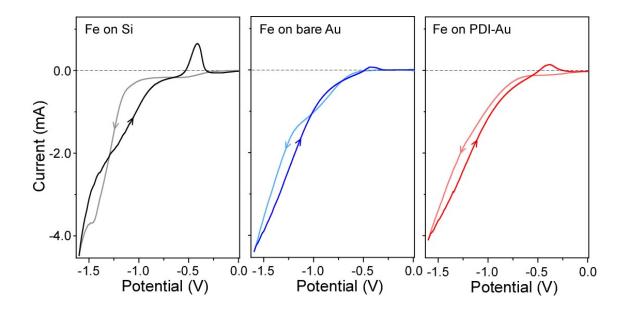
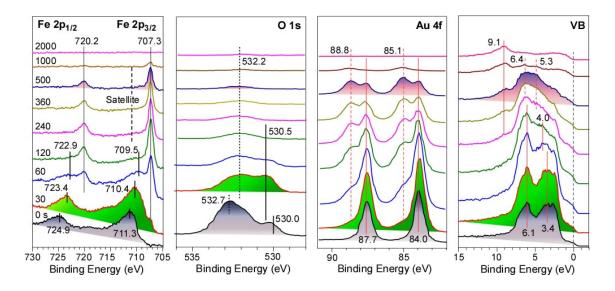



Figure S3d: Cyclic voltammograms for samples shown in Figure S3a, S3b, and S3c.

Figure S4: XPS spectra of Fe 2p, O 1s, Au 4f and valence band (VB) regions of Fe electrodeposited on large Au NIs, shown in Figure 2, Sample F1.

 Table S1:
 Review of Au 4f XPS of Fe-Au hybrid materials.

Preparation method	System	Au Species	Ref.
		(4f _{7/2} Binding Energy, eV)	
Co-precipitation,	Au/ FeO(OH),	Au ⁰ (84.3)	
1wt% Au	Fe ₂ O ₃	Au ⁰ , electron-rich state (83.8)	51
	Au/ Fe ₃ O ₄ , FeO		
Deposition-	Au/ Fe _x O _y	Au⁰ (≤ 84.1)	52
precipitation on	anneal(150-300°C)		
Fe _x O _y , 3wt%			
Impregnation of	Au/Fe(OH) ₃ , and	Au ^I 84.9: strongly bound	
Au(PPh ₃)(NO ₃) on	Au/ Fe ₂ O ₃	[Au(PPh₃)]⁺	53
Fe oxides		Au ⁰ 84.0: upon annealing	
Au reduction on	Fe ₃ O₄@Au core-	Au ⁰ (84.2)	
Fe ₃ O ₄	shell		54
5nm core/1nm shell			
Reduction of Au into			
Porous alpha-Fe ₂ O ₃	Au into porous	Au ⁰ (83.2) negative state	55
Nanorods	alpha-Fe ₂ O ₃		
0.5 wt%			
Co-precipitation and	Au/Fe ₂ O ₃	Au ⁰ (84.0):70-85%	56
deposition-		AuO _x (84.8)30-15%	
precipitation			
Co-precipitation,	Au/Fe ₂ O ₃	As-prepared: mixed Au ⁰	
5wt% Au		(84.3) and AuO _x (85.1)	57
		Upon 673K calcination:	
		mainly Au ⁰ (84.3)	
Sputter deposition of	Au/ Fe _x O _y	Au ⁰ (84.1)	This work
Au on Fe _x O _y		Au-O (84.5) at the interface	
Electrodeposition of	Au/ Fe _x O _y	Au ⁰ (84.1)	This work
Au on Fe _x O _y		Au-O (84.5) at the interface	
Electrodeposition of	Fe _x O _y /Au	Au ⁰ (84.1)	This work
Fe oxides on Au/Si			