Electronic Supplementary Information(ESI)

One-Pot Highly Diastereoselective Synthesis of *anti,anti* Vinylic 3-amino-1,2 diols *via* Proline Catalyzed Sequential α-Amination/Benzoyloxyallylation of Aldehydes

Brij Bhushan Ahuja and Arumugam Sudalai*

Chemical Engineering & Process Development Division, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune-411008 Maharashtra, India. India, Fax: (+) 91-02025902675.

E-mail: a.sudalai@ncl.res.in

Table of Contents

<u>Sr.No.</u>	Description	<u>Page No.</u>
1	General information	2
2	Experimental section	2-12
3	¹ H and ¹³ C NMR Spectra	13-29
4	HPLC Chromatogram	30-40
5	HRMS Data	41-56

EXPERIMENTAL SECTION

General Description

Solvents were purified and dried by standard procedures before use; petroleum ether of boiling range 60–80 °C was used. Melting points are uncorrected. Optical rotations were measured using sodium D line on a JASCO P-2000 polarimeter. Infrared spectra were recorded on Shimadzu FTIR-8400 spectrometer. The wave numbers (n) of recorded IR-signals are quoted in cm–1. ¹H and ¹³C NMR were recorded on Bruker AV-200, AV-400 and AV-500 NMR spectrometers, respectively. HRMS mass spectra were recorded on a Thermo Scientific Q-Exactive, Accela 1250 pump. HPLC was performed on Agilent chromatogram with variable wavelength detector. Purification was done using column chromatography (230–400 mesh).

General Experimental Procedure:

General experimental procedure for sequential α-amination/benzoyloxyallylation of Aldehydes:

To a cooled solution of azadicarboxylate (5.0 mmol) and L-proline (10 mol%) in dry CH₃CN (20 mL) at 0 °C was added aldehydes (**1a-j**, 5 mmol) and the mixture was stirred for 3 h at 0 °C. This was followed by the addition of zinc powder (7.5 mmol), 3-benzoyloxyallyl bromide (7.5 mmol) and saturated aq. NH₄Cl (20 ml) at -20 °C for 2 h. The progress of the reaction can be monitored by TLC. After completion of the reaction, it was concentrated in vacuum to remove acetonitrile and the concentrate was extracted with ethyl acetate (3×40 mL). The combined organic layers were washed with brine, dried over anhyd. Na₂SO₄, and concentrated under reduced pressure to give the crude products, which were then purified by flash column chromatography (100-200 mesh) using petroleum ether and ethyl acetate (4:1) as eluents to afford the pure products **2a-j**.

Diisopropyl 1-((2R,3R,4S)-4-(benzoyloxy)-3-hydroxyhex-5-en-2-yl)hydrazine-1,2dicarboxylate (2a) R' = *i*-Pr:

Yield: 79%; colorless solid; **mp** 110-112 °C; **IR** (CHCl₃): 3303, 2982, 2932, 1708, 1386, 1267, 1105, 753, 712 cm⁻¹; ¹**H NMR** (200 MHz, CDCl₃): δ 1.20-1.34 (m, 15H), 4.17 (brs, 1H), 4.38 (brs, 1H), 4.9-5.03 (m, 2H), 5.30-5.48 (m, 3H), 5.98-6.15 (m, 1H), 6.53 (brs, NH), 7.45 (t, J = 8.9 Hz, 2H), 7.57 (t, J = 6.3 Hz, 1H), 8.09 (d, J = 8.9 Hz, 1H); ¹³**C NMR** (50 MHz, CDCl₃): δ 11.0, 21.7, 54.6, 69.6, 69.9, 70.5, 73.9, 118.1, 128.2, 129.6, 132.9, 155.2, 156.5, 165.3; **HRMS** (**ESI, m/z):** calcd for C₂₁H₃₀N₂O₇ [M+Na]⁺ 445.1945, found 445.1938; **HPLC**: [Chiralpack AD-H, 2-Propanol/n-Hexane = 10/90, flow rate 0.5 mL/min, $\lambda = 220$ nm, retention time: (minor) 20.92 min, (major) 25.13 min, ee 77%]; [α]^D₂₅ +25.81 (c 3.78, CHCl₃).

Di-tert-butyl 1-((2R,3R,4S)-4-(benzoyloxy)-3-hydroxyhex-5-en-2-yl)hydrazine-1,2dicarboxylate (2a) R' = *t*-Bu:

Yield: 81%; gum; **IR** (CHCl₃): 3304, 2983, 1705, 1267, 1106, 749 cm⁻¹; ¹**H** NMR (200 MHz, CDCl₃): δ 1.19 (d, J = 7.9 Hz, 3H), 1.48 (s, 18H), 4.17 (brs, 1H), 4.31 (brs, 1H), 5.30-5.46 (m, 3H), 5.99-6.16 (m, 1H), 6.31 (brs, NH), 7.44 (t, J = 7.9 Hz, 2H), 7.57 (t, J = 6.7 Hz, 1H), 8.09 (d, J = 7.1 Hz, 2H); ¹³C NMR (50 MHz, CDCl₃): δ 10.6, 28.1, 54.5, 73.6, 74.8, 81.9, 118.2, 128.3, 129.7, 133.1, 154.4, 165.3; **HRMS (ESI, m/z):** calcd for C₂₃H₃₄N₂O₇ [M+Na]⁺473.2263, found 473.2271. **HPLC**: [Chiralpack AD-H, 2-Propanol/n-Hexane = 10/90, flow rate 0.5 mL/min, $\lambda = 220$ nm, retention time: (major) 21.18 min and (minor) 28.90 min, ee 78%; [α]^D₂₅ +56.57 (c 1.84, CHCl₃).

Dibenzyl 1-((2R,3R,4S)-4-(benzoyloxy)-3-hydroxyhex-5-en-2-yl)hydrazine-1,2dicarboxylate (2a) R' = Bn: **Yield**: 84%; gum; **IR** (CHCl₃): 3303, 2983, 1705, 1368, 1216, 749 cm⁻¹; ¹**H** NMR (200 MHz, CDCl₃): δ 1.18 (brs, 3H), 3.97-4.46 (m, 2H), 5.10 (s, 5H), 5.27-5.50 (m, 3H), 5.59 (brs, NH), 7.24 (s, 10H), 7.37 (s, 2H), 7.49 (s, 1H), 8.05 (d, J = 7.2 Hz, 2H); ¹³C NMR (50 MHz, CDCl₃): δ 14.2, 55.5, 67.5, 67.8, 73.9, 75.7, 118.1, 127.5, 128, 128.3, 128.4, 129.7, 129.9, 133.1, 135.3, 155.3, 156.7, 169.6; **HRMS (ESI, m/z):** calcd for C₂₉H₃₀N₂O₇ [M+Na]⁺ 541.1951, found 541.1951; **HPLC**: [Chiralpack AD-H, 2-Propanol/n-Hexane = 10/90, flow rate 0.5 mL/min, $\lambda = 220$ nm, retention time: (major) 68.41 min and (minor) 79.74 min, ee 93%]; [α]^D₂₅ +120.8 (c 0.9, CHCl₃).

Diisopropyl 1-((3R,4R,5S)-5-(benzoyloxy)-4-hydroxyhept-6-en-3-yl)hydrazine-1,2dicarboxylate (2b):

Yield: 87%; gum; **IR** (CHCl₃): 3317, 2982, 1705, 1307, 1237, 741 cm⁻¹; ¹**H NMR** (200 MHz, CDCl₃): δ 0.91 (brs, 3H), 1.27 (s, 12H), 1.73 (brs, 2H), 4.13 (brs, 2H), 4.91-5.03 (m, 2H), 5.33-5.54 (m, 3H) 5.99-6.16 (m, 1H), 6.46 (brs, NH), 7.45 (t, J = 6.3 Hz, 2H), 7.58 (t, J = 6.7 Hz, 1H), 8.1 (s, 2H); ¹³**C NMR** (50 MHz, CDCl₃): δ 11.2, 18.1, 21.9, 61.1, 70.1, 70.6, 73.6, 75.1, 118.6, 128.3, 129.6, 129.7, 129.9, 133, 155.3, 156, 165.1; **HRMS** (**ESI, m/z**): calcd for C₂₂H₃₂N₂O₇ [M+Na]⁺ 459.2107, found 459.2091. **HPLC**: Chiracel AS-H, 2-Propanol/n-Hexane = 10/90, flow rate 0.5 mL/min, $\lambda = 220$ nm, retention time: (major) 18.49 min and (minor) 28.39 min, ee 91%]; [α]^D₂₅-2.8 (c 2.2, CHCl₃).

Diisopropyl 1-((3R,4R,5S)-5-(benzoyloxy)-4-hydroxy-2-methylhept-6-en-3-yl)hydrazine-1,2-dicarboxylate (2c)

Yield: 83%; gum; **IR** (CHCl₃): 3306, 2962, 1267, 1105, 754 cm⁻¹; ¹**H NMR** (200 MHz, CDCl₃): δ 0.94 (d, *J* = 6.7 Hz, 3H), 1.11 (d, *J* = 3.4 Hz, 3H), 1.23-1.32 (m, 12H), 2.12-2.34 (m, 1H), 44.11 (m, 1H), 4.26 (t, J = 4.5 Hz, 1H), 4.86-5.06 (m, 2H), 5.35-5.63 (m, 3H), 6.0-6.17 (m, 1H), 6.88 (brs, NH), 7.43 (t, J = 6.9 Hz, 2H), 7.56 (t, J = 6.9 Hz, 1H), 8.07 (d, J = 4.1 Hz, 2H); ¹³C NMR (50 MHz, CDCl₃): δ 19.6, 22, 27.7, 29.6, 63.7, 70.3, 70.8, 71.8, 72.5, 119.4, 128.4, 129.7, 129.8, 130, 133.1, 156, 156.2, 165.3; HRMS (ESI, m/z): calcd for C₂₃H₃₄N₂O₇ [M+Na]⁺ 473.2263, found 473.2253; HPLC: [Chiralpack AD-H, 2-Propanol/n-Hexane = 10/90, flow rate 0.5 mL/min, λ = 220 nm, retention time: (major) 16.47 min and (minor) 19.82 min, ee 95%]; [α]^D₂₅ +212.69 (c 0.54, CHCl₃).

Diisopropyl 1-((4R,5R,6S)-6-(benzoyloxy)-5-hydroxyoct-7-en-4-yl)hydrazine-1,2dicarboxylate (2d):

Yield: 86%; viscous oil; **IR** (CHCl₃): 3316, 2983, 1705, 1267, 1106, 749 cm⁻¹; ¹**H** NMR (200 MHz, CDCl₃): δ 0.98 (t, J = 6.2 Hz, 3H), 1.28 (s, 12H), 1.6-1.87 (m, 4H), 4.14 (brs, 1H), 4.21 (brs, 1H), 4.92-5.0 (m, 2H), 5.30-5.57 (m, 3H), 5.99-6.16 (m, 1H), 6.69 (brs, NH), 7.44 (t, J = 6.8 Hz, 2H), 7.57 (t, J = 5.5 Hz, 1H), 8.09 (d, J = 5.9 Hz, 2H); ¹³C NMR (50 MHz, CDCl₃): δ 13.6, 19.3, 21.7, 26.5, 58.5, 69.8, 70.3, 73.5, 74.9, 118.3, 128.1, 129.5, 132.8, 155.3, 156.7, 165.4; **HRMS (ESI, m/z):** calcd for C₂₃H₃₄N₂O₇ [M+Na]⁺ 473.2258, found 473.2249; **HPLC**: [Chiralpack AD-H, 2-Propanol/n-Hexane = 10/90, flow rate 0.5 mL/min, $\lambda = 220$ nm, retention time: (minor) 27.2 min and (minor) 30.607 min, ee 93%]; [α]^D₂₅ +65.68 (c 1.94, CHCl₃).

Diisopropyl 1-((3R,4R,5S)-5-(benzoyloxy)-4-hydroxy-1-(methoxymethoxy)hept-6-en-3yl)hydrazine-1,2-dicarboxylate (2e):

Yield: 87%; gum; **IR** (CHCl₃): 3405, 2982, 2938, 1706, 1379, 1231, 1103 cm⁻¹; ¹**H NMR** (200 MHz, CDCl₃): δ 1.26 (s, 12H), 2.0 (brs, 2H), 3.24 (s, 3H), 3.54 (brs, 2H), 4.14 (brs, 1H), 4.38 (brs, 1H), 4.49 (s, 2H), 4.87-4.99 (m, 2H), 5.32-5.53 (m, 3H), 6.0-6.17 (m, 1H), 6.87 (brs, NH),

7.44 (t, J = 6.9 Hz, 2H), 7.54 (t, J = 7.1 Hz, 1H), 8.1 (d, J = 6.2 Hz, 2H) ¹³C NMR (50 MHz, CDCl3): δ 21.8, 30.6, 54.8, 57.5, 65.2, 69.9, 70.4, 73.6, 74.7, 118.3, 128.2, 129.6, 132.9, 155.4, 165; HRMS (ESI, m/z): calcd for C₂₄H₃₆N₂O₉ [M+Na]⁺ 519.2318, found 519.2316; HPLC: [Chiralpack AD-H, 2-Propanol/n-Hexane = 10/90, flow rate 0.5 mL/min, $\lambda = 220$ nm, retention time :(major) 24.01 min and (minor) 29.12 min, ee 93%]; $[\alpha]^{D}_{25}$ -6.61 (c 0.66, CHCl₃).

Di-tert-butyl 1-((3R,4R,5S)-5-(benzoyloxy)-1-(benzyloxy)-4-hydroxyhept-6-en-3yl)hydrazine-1,2-dicarboxylate (2f):

Yield: 84%; gum; **IR** (CHCl₃): 3364, 2980, 1707, 1269, 1216, 749, 711 cm⁻¹; ¹**H NMR** (200 MHz, CDCl₃): δ 1.48 (s, 18H), 2.05 (brs, 2H), 3.61 (brs, 2H), 4.17 (brs, 1H), 4.42 (s, 2H), 4.51 (s, 1H), 5.31-5.54 (m, 3H), 6.02-6.18 (m, 1H), 6.81 (brs, NH), 7.27 (s, 5H), 7.44 (t, J = 7.3 Hz, 2H), 7.56 (t, J = 7.2 Hz, 1H), 8.11 (d, J = 7.3 Hz, 2H); ¹³**C NMR** (50 MHz, CDCl₃): δ 28.1, 29.6, 57.9, 68.1, 73.1, 73.7, 74.9, 81.1, 81.9, 118.3, 127.5, 128.3, 129.7, 129.8, 130.1, 132.9, 133.1, 137.9, 154.9, 165.2; **HRMS (ESI, m/z):** calcd for C₃₁H₄₂N₂O₈ [M+Na]⁺ 593.2838, found 593.2841; **HPLC**: [Chiralpack AD-H, 2-Propanol/n-Hexane = 10/90, flow rate 0.5 mL/min, $\lambda = 220$ nm, retention time : (minor) 22.79 min and (major) 26.14 min, ee 93%]; [α]^D₂₅ -5.88 (c 0.76, CHCl₃).

Diisopropyl 1-((3S,4R,5R)-3-(benzoyloxy)-4-hydroxynona-1,8-dien-5-yl)hydrazine-1,2dicarboxylate (2g):

Yield: 82%; gum; **IR** (CHCl₃): 3305, 2981, 2923, 1704, 1267, 1105, 754 cm⁻¹; ¹**H NMR** (200 MHz, CDCl₃): δ 1.26 (s, 12H), 1.69-2.15 (m, 4H), 4.14 (brs, 1H), 4.22 (brs, 1H), 4.81-5.03 (m, 4H), 5.32-5.48 (m, 3H), 5.65-5.82 (m, 1H), 5.98-6.15 (m, 1H), 6.71 (brs, NH), 7.44 (t, *J* = 7.7 Hz 2H), 7.57 (t, *J* = 7.2 Hz, 1H), 8.09 (d, *J* = 6.7 Hz, 2H), ¹³**C NMR** (50 MHz, CDCl₃): δ 22, 29.7,

30.6, 58.5, 70.2, 70.7, 73.8, 74.4, 115.3, 118.7, 128.3, 129.8, 133.1, 137.5, 155.4, 155.8, 165.5; **HRMS (ESI, m/z):** calcd for $C_{24}H_{34}N_2O_7$ [M+Na]⁺ 485.2264, found 485.2267; **HPLC**: [Chiralpack AD-H, 2-Propanol/n-Hexane = 10/90, flow rate 0.5 mL/min, λ = 220 nm, retention time : (major) 12.530 min and (minor) 15.123 min, ee 95%]; $[\alpha]^{D}_{25}$ +133.85 (c 0.84, CHCl₃).

Di-tert-butyl 1-((2R,3R,4S)-4-(benzoyloxy)-3-hydroxy-1-phenylhex-5-en-2-yl)hydrazine-1,2-dicarboxylate (2h):

Yield: 84%; gum; **IR** (CHCl₃): 3323, 2981, 1704, 1267, 1109, 842, 741 cm⁻¹; ¹**H** NMR (200 MHz, CDCl_{3'}): δ 1.26-1.48 (m, 18H), 3.05 (brs, 2H), 4.35 (t, J = 7.9 Hz, 1H), 4.63 (brs, 1H), 5.32-5.64 (m, 3H), 6.04-6.21 (m, 1H), 7.11-7.26 (m, 5H), 7.44 (t, J = 7.5 Hz, 2H), 7.54 (d, J = 6.9 Hz 1H,), 8.12 (t, J = 6.3 Hz, 2H); ¹³**C** NMR (50 MHz, CDCl₃): δ 28.1, 30.6, 60.5, 74.4, 74.8, 81.6, 82.1, 118.2, 126.4, 128.4, 128.6, 129.7, 130.1, 133, 134.1, 138.7, 154.7, 165.3; **HRMS** (**ESI, m/z):** calcd for C₂₉H₃₈N₂O₇ [M+Na]⁺ 549.2577, found 549.2579; **HPLC**: [Chiralpack AD-H, 2-Propanol/n-Hexane = 10/90, flow rate 0.5 mL/min, $\lambda = 220$ nm, retention time: (major) 21.64 min and (minor) 32.11 min, ee 97%]; [α]^D₂₅ +130.4 (c 0.86, CHCl₃).

Di-tert-butyl 1-((2R,3R,4S)-4-(benzoyloxy)-3-hydroxy-1-(4-methoxyphenyl)hex-5-en-2yl)hydrazine-1,2-dicarboxylate (2i):

Yield: 81%; gum; **IR** (CHCl3): 3364, 2981, 2922, 1708, 1351, 1263, 1105, 833, 711 cm⁻¹; ¹**H NMR** (200 MHz, CDCl₃): δ 1.34-1.47 (s, 18H), 2.97 (brs, 2H), 3.74 (s, 3H), 4.26 (brs, 1H), 4.38 (brs, 1H), 5.34 (t, *J* = 8.5 Hz, 1H), 5.45 (dd, *J* = 5.4, 11.6 Hz, 1H), 5.6 (t, *J* = 5.4 Hz, 1H), 6.03-6.15 (m, 1H), 6.36 (brs, NH), 6.75 (d, *J* = 8.8 Hz, 2H), 7.02 (d, *J* = 8.8 Hz, 2H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.57 (q, *J* = 7.6 Hz, 1H), 8.11 (dd, *J* = 7.1, 12.5 Hz, 2H); ¹³**C NMR** (50 MHz, CDCl₃): δ 28.2, 29.7, 55.1, 59.6, 74.4, 74.8, 81.4, 82.1, 114.1, 118.2, 128.3, 128.4, 129.3, 129.8, 130.1, 133.3, 134.2, 165.1, 165.3, 170.1; **HRMS (ESI, m/z):** calcd for $C_{30}H_{40}N_2O_8 [M+H]^+ 557.2862$, found 557.2875; **HPLC**: [Chiralpack AD-H, 2-Propanol/n-Hexane = 10/90, flow rate 0.5 mL/min, $\lambda = 220$ nm, retention time: (major) 26.608 min and (minor) 43.61 min, ee 99%]; $[\alpha]_{25}^{D}$ +288.75 (c 0.4, CHCl₃).

Experimental procedure for the preparation of diisopropyl 1-((2R,3R,4S)-4-(benzoyloxy)-3,6-dihydroxyhexan-2-yl)hydrazine-1,2-dicarboxylate (3).

Aminodiol **1a** (0.22 g; 0.5 mmol) was added dropwise to a solution of BH₃.DMS (0.023 mL, 0.025 mmol) in dry THF (10 mL) at room temperature and then mixture was stirred for 3 h. The reaction flask was cooled at 0 °C and NaOH (0.02 g; 0.5 mmol) in ethanol (2 mL) was added to the reaction mixture followed by 30% H₂O₂ (0.06 mL, 0.7 mmol). It was then allowed to stir at rt for 2 h and the product was extracted with ethyl acetate washed with brine, dried over Na₂SO₄ and concentrated in vacuum. Purification by column chromatography over silica gel using petroleum ether and ethyl acetate as eluents (4:1) gave **3** as a colorless oil.

Yield: 75%; colorless oil; **IR** (CHCl₃): 3372, 2091, 1706, 1671, 1511, 1363, 711 cm⁻¹; ¹H NMR (200 MHz, CDCl₃): δ 1.11-1.20 (m, 15H), 1.91-2.15 (m, 2H), 2.67 (brs, OH), 3.39 (brs, OH), 3.52-3.70 (m, 2H), 4.04 (brs, 1H), 4.30 (brs, 1H), 4.84-4.89 (m, 2H), 5.04 (t, J = 4.4 Hz, 1H), 7.03 (brs, NH), 7.36 (t, J = 7.8 Hz, 2H), 7.49 (t, J = 6.8 Hz, 1H), 7.98 (d, J = 6.8 Hz, 2H); ¹³C NMR (50 MHz, CDCl3): δ 9.9, 21.9, 34.4, 54.5, 58.3, 70.1, 72.4, 73.8, 128.3, 129.7, 133.1, 155.2, 166.4; **HRMS (ESI, m/z):** calcd for C₁₇H₂₅N₂O₈ [M+H]⁺ 441.2237, found 441.2238; [α]^D₂₅ +32.9 (c 0.21, CHCl₃).

Experimental procedure for the preparation of (3S,4R,5R)-5-((tertbutoxycarbonyl)amino)-4-hydroxyhexan-3-yl benzoate (4). The solution of vicinal amino diol **1c** (1g, 1.9 mmol) in MeOH (20 mL) was treated with Raney Ni (0.5 g, excess) under H₂ atmosphere (80 psig) for 24 h. The reaction mixture was filtered over celite and concentrated to give crude product, which was dissolved in CH₂Cl₂ (15 mL) and added NEt₃ (0.26 mL, 1.9 mmol) followed by Boc₂O (0.42 g, 1.9 mmol) and reaction mixture was stirred for 1 h at room temperature. After completion of reaction was quenched with water and extracted with CH₂Cl₂ (3 X 15 mL) and concentrate to give crude product which was purified by flash column chromatography (100-200 mesh) using petroleum ether and ethyl acetate (4:1) as eluents to afford the pure product **4**.

Yield: 89%; gum; **IR** (CHCl₃): 3335, 2918, 1734, 1695, 749 cm⁻¹; ¹**H NMR** (200 MHz, CDCl₃): δ 0.98 (t, J = 7.3 Hz, 3H), 1.17 (d, J = 6.8 Hz, 2H), 1.45 (s, 9H), 1.70 (brs, 1H), 1.78-1.85 (m, 1H), 1.93-1.99 (m, 1H), 3.87 (brs, 1H), 4.78-4.83 (m, 1H), 5.09-5.15 (m, 1H), 7.45 (t, J = 7.3 Hz, 2H), 7.58 (t, J = 7.7 Hz, 1H), 8.05-8.07 (dd, J = 1.3, 8.2 Hz, 2H); ¹³C **NMR** (50 MHz, CDCl3): δ 9.6, 15.7, 23.7, 28.4, 48.4, 75.1, 76.2, 79.6, 128.5, 129.7, 133.1, 155.8, 166.3; **HRMS** (**ESI**, **m/z**): calcd for C₁₈H₂₇NO₅ [M+Na]⁺ 360.1786, found 360.1792; [α]²⁵_D +29.1 (c 1.0 in CHCl₃).

Dibenzyl 1-((2S,3S,4R)-4-(benzoyloxy)-1-(benzyloxy)-3-hydroxyhex-5-en-2-yl)hydrazine-1,2-dicarboxylate (*ent*-2j):

Yield: 85%; gum; IR (CHCl₃): 3309, 2979, 1706, 1262, 752 cm⁻¹; ¹H NMR (200 MHz, CDCl₃):
δ 3.81 (brs, 2H), 4.36 (s, 2H), 4.42 (brs, 1H), 4.57 (brs, 1H), 5.13 (s, 4H), 5.29-5.39 (m, 2H),
5.52 (brs, 1H), 5.94-6.08 (m, 1H), 6.79 (brs, NH), 7.19-7.28 (m, 15H), 7.41 (d, J = 7.3 Hz, 2H),
7.52 (s, 1H), 8.06 (d, J = 6.8 Hz, 2H); ¹³C NMR (50 MHz, CDCl₃): δ 58.6, 67.9, 68.2, 68.7,
73.1, 74.7, 75.6, 118.7, 127.7, 127.8, 128.2, 128.4, 128.4, 128.5, 129.8, 133.1, 135.4, 135.7,
137.5, 155.6, 165.3; HRMS (ESI, m/z): calcd for C₃₆H₃₆N₂O₈ [M+H]⁺ 625.255, found

625.2517; **HPLC**: [Chiralpack AD-H, 2-Propanol/n-Hexane = 10/90, flow rate 0.5 mL/min, λ = 220 nm, retention time: (major) 86.00 min and (minor) 93.6 min, ee 93%]; [α]^D₂₅ +288.75 (c 0.4, CHCl₃).

Experimental procedure for the preparation of Benzyl ((4S,5S)-4-((benzyloxy)methyl)-5-((R)-1-hydroxyallyl)-2-oxooxazolidin-3-yl)carbamate (5).

To a solution of vicinal amino diol *ent-2*j (2 g, 3.6 mmol) in MeOH (20 ml) at room temperature was added LiOH.H₂O (296 mg, 7.2 mmol) and the reaction mixture was stirred for 3 h. After completion of the reaction, it was diluted with water and the mixture was concentrated in vacuum to remove MeOH and the concentrate was extracted with ethyl acetate (3×40 ml). The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give crude product, which was then purified by flash column chromatography using petroleum ether: ethyl acetate (2:3) to afford pure oxazolidinone **5**.

Yield: 71%; gum; **IR** (CHCl3): 3368, 2084, 1707, 1675, 1261, 750 cm⁻¹; ¹**H NMR** (200 MHz, CDCl₃): δ 3.72 (q, J = 9.6 Hz, 2H), 4.08 (brs, 1H), 4.33 (s, 1H), 4.48 (t, J = 6.9 Hz 1H,), 5.07 (s, 2H), 5.2 (d, J = 10.5 Hz, 1H), 5.35 (d, J = 17.4 Hz, 1H), 5.84-5.92 (m, 1H), 7.23-7.3 (m, 9H), 7.44 (t, J = 9.1 Hz, 1H); ¹³**C NMR** (50 MHz, CDCl3): δ 58.4, 64.5, 67.7, 69.4, 71.1, 73.3, 117.3, 127.5, 127.7, 128, 128.1, 128.2, 128.4, 128.5, 135.2, 135.7, 136.6, 155.5, 156.6; **HRMS (ESI, m/z):** calcd for C₂₂H₂₄N₂O₆ [M+H]⁺413.1712, found 413.1792; $[\alpha]_{25}^{D}$ -88.96 (c 4.46, CHCl₃).

Experimental procedure for the preparation of benzyl ((4S,5S)-4-((benzyloxy)methyl)-5-((R,E)-1-hydroxypentadec-2-en-1-yl)-2-oxooxazolidin-3-yl)carbamate (6) To a solution of oxazolidinone **5** (1.3 g, 3.16 mmol) in 20 ml of dry CH_2Cl_2 was added Grubbs^{IInd} generation catalyst (5 mol%, 15 mg) followed by tetradecene (2.1 g, 10.8 mmol) and the resulting mixture was heated at reflux for 6 h. After completion of the reaction, it was concentrated to give the crude product, which was then purified by flash column chromatography (100-200 mesh) using petroleum ether and ethyl acetate (7:3) as eluents to afford the pure product **6**.

Yield: 81%; gum; **IR** (CHCl3): 3368, 2084, 1708, 1671, 1352, 642 cm⁻¹; ¹**H NMR** (200 MHz, CDCl₃): δ 0.88 (t, J = 7.1 Hz, 3H), 1.26 (s, 20 H), 2.03 (q, J = 7 Hz, 2H), 2.9 (brs, OH), 3.69-3.79 (m, 2H), 4.09 (brs, 1H), 4.31 (brs, 1H), 4.42 (brs, 1H), 4.51 (q, J = 11.6 Hz, 2H), 5.11 (q, J = 12.2 Hz, 2H), 5.49 (dd, J = 5.8, 9.7 Hz, 1H) 5.78 (m, 1H), 6.89 (brs,NH), 7.25-7.33 (m, 10H); ¹³C NMR (50 MHz, CDCl3): δ 14.1, 22.7, 28.9, 29.2, 29.4, 29.5, 29.6, 29.7, 31.9, 32.3, 58.6, 64.5, 67.9, 69.6, 73.6, 77.8, 127.4, 128, 128.2, 128.3, 128.4, 128.5, 128.7, 135.3, 136.3, 155.4, 156.5; **HRMS (ESI, m/z):** calcd for C₃₄H₄₈N₂O₆ [M+Na]⁺ 581.3591, found 581.3573; [α]^D₂₅ - 232.9 (c 0.34, CHCl₃).

Experimental procedure for the preparation of D-ribo-phytosphingosine tetraacetate (7).

A solution of olefin **6** (1 g, 1.7 mmol) in MeOH (20 mL) was treated with Raney Ni (0.5 g, excess) under H₂ atmosphere (80 psig) for 24 h. The reaction mixture was filtered over celite to give crude product, in which was added K_2CO_3 (248 mg, 1.8 mmol) and the reaction mixture was stirred for 6 h until consumption of the starting material and methanol was removed in vacuum. H₂O was added to the crude product and extracted with ethyl acetate (3 X 10 mL), dried over Na₂SO₄ and concentrated. The crude material was subsequently acetylated with acetic anhydride (0.72 mL, 7.65 mmol), pyridine (0.62 mL, 7.65 mmol) and DMAP (cat). After

overnight stirring, the solvent was evaporated and the residue was purified on a silica gel column using petroleum ether and ethyl acetate (5:1) as eluent to give tetraacetate 7 as a white solid. Spectroscopic data of tetraacetate are in full agreement with those reported in literature.

Yield: 76%; white solid; **mp**: 45-46 °C; **IR** (CHCl3): 2920, 1734, 1685, 749 cm⁻¹; ¹**H NMR** (200 MHz, CDCl₃): δ 0.88 (t, J = 7 Hz, 3H), 1.25 (brs, 24 H), 1.6-1.69 (m, 2H), 2.02 (s, 3H), 2.04 (s, 6H), 2.08 (s, 2H), 3.98 (dd, J = 2.9, 11.7 Hz, 1H), 4.29 (dd, J = 4.7, 11.6, Hz, 1H), 4.42-4.48 (m, 1H), 4.92 (dt, J = 3.1, 9.7 Hz, 1H), 5.09 (dd, J = 3.1, 8.3 Hz, 1H), 6.01 (d, J = 9.3 Hz, NH); ¹³**C NMR** (50 MHz, CDCl3): δ 14.1, 20.7, 20.8, 21.0, 22.7, 23.2, 25.5, 28.1, 29.3, 29.4, 29.5, 29.6, 29.6, 29.6, 29.7, 31.9, 47.6, 62.8, 71.9, 73.0, 169.5, 169.9, 170.7, 171.0; **HRMS (ESI, m/z):** calcd for C₂₆H₄₇NO₇ [M+H]⁺ 486.3431, found 486.3435; [α]^D₂₅ +20.1 (c 1.0 in CHCl₃); {lit. [α]²⁵_D +20.9 (c 1.1 in CHCl₃)}.

¹H and ¹³C NMR spectra of new compounds

¹H and ¹³C NMR spectra of 2a (R' = Bn)

15

¹H and ¹³C NMR spectra of 7

¹H and ¹³C NMR spectra of 3

2. HPLC DATA

VWD: Signal A, 220 nm Results				
Retention Time	Area	Area %	Height	Height %
20.923	1818033419	84.58	42920581	88.57
25.133	331406345	15.42	5539913	11.43
Totals				
	2149439764	100.00	48460494	100.00

VWD: Signal A,				
220 nm Results				
Retention Time	Area	Area %	Height	Height %
21.180	1354087281	85.70	29871545	89.24
28.917	225937552	14.30	3603280	10.76
Totals				
	1580024833	100.00	33474825	100.00

VWD: Signal A, 220 nm Results				
		. ~		
Retention Time	Area	Area %	Height	Height %
68.413	437872111	96.34	4390683	96.19
79.747	16619017	3.66	174090	3.81
Totals				
	454491128	100.00	4564773	100.00

VWD: Signal				
A, 220 nm				
Results				
Retention Time	Area	Area %	Height	Height %
18.490	4377325612	94.10	51823051	95.50
28.397	274385808	5.90	2439513	4.50
Totals				
	4651711420	100.00	54262564	100.00

VWD: Signal				
A, 220 nm				
Results				
Retention Time	Area	Area %	Height	Height %
16.477	3927814458	97.64	71167789	97.12
19.820	94731861	2.36	2108664	2.88
Totals				
	4022546319	100.00	73276453	100.00

VWD: Signal				
A, 254 nm				
Results				
Dotontion Time	Aroo	Aroo 02	Unight	Haight 0%
Ketention Time	Alea	Alea %	neight	neight %
27.200	6026001	2.94	85701	3.19
30.607	198857225	97.06	2598245	96.81
Totals				
	204883226	100.00	2683946	100.00

VWD: Signal				
A, 220 nm				
Results				
Retention Time	Area	Area %	Height	Height %
24.017	4883290118	97.22	67088890	96.30
29.127	139847311	2.78	2575790	3.70
Totals				
	5023137429	100.00	69664680	100.00

VWD: Signal A,				
220 nm Results				
Retention Time	Area	Area %	Height	Height %
22.790	28750037	1.93	730956	3.83
26.147	1461277993	98.07	18374212	96.17
Totals				
	1490028030	100.00	19105168	100.00

VWD: Signal A,				
220 nm Results				
Retention Time	Area	Area %	Height	Height %
21.643	2864322578	98.15	59702583	98.17
32.113	53898977	1.85	1115457	1.83
Totals				
	2918221555	100.00	60818040	100.00

VWD: Signal A,				
220 nm Results				
Retention Time	Area	Area %	Height	Height %
26.083	3280795998	99.43	55728819	99.46
43.610	18850571	0.57	303442	0.54
Totals				
	3299646569	100.00	56032261	100.00

VWD: Signal A,				
220 nm Results				
Retention Time	Area	Area %	Height	Height %
86.007	2207902336	97.49	13887984	96.34
93.603	56955538	2.51	527171	3.66
Totals				
	2264857874	100.00	14415155	100.00

3. HRMS Data

