Supplementary Information

Studies on MCM-41/PDMS based hybrid polybenzoxazine nanocomposites for interlayer low k dielectrics

Ramachandran Sasi kumar, Mathivathanan Ariraman and Muthukaruppan Alagar*

*Polymer Composites Lab, Department of Chemical Engineering, A.C.Tech, Anna University, Chennai-600 025, India. E-mail: <u>mkalagar@yahoo.com</u>

FTIR spectral data of

OAP-Bz: (KBr, cm⁻¹): 3032 (allylic C-H), 1595 (allylic C=C stretching), 1221 (Ar-O-C), 941 (N-C-O) and 754 (ortho-substituted benzene ring).

PDMS-Bz: (KBr, cm⁻¹): 2962-2897 (aliphatic CH, CH₂ stretching), 1220 (Ar-O-C), 1081-1023 (Si-O-C), 943 (N-C-O).

TES-Bz: (KBr, cm⁻¹): 2945-2837 (aliphatic CH, CH₂ stretching), 1242 (Ar-O-C), 1100-1027 (Si-O-C), 930 (N-C-O).

BTMS: (KBr, cm⁻¹): 2935 (aliphatic CH, CH₂ stretching), 1223 (Ar-O-C), 1188-1081 (Si-O-C), 941 (N-C-O).

NMR spectral data of

OAP-Bz:

¹**H NMR (400MHz, CDCl₃) δ (ppm):** 7.28-6.82 (8H, Ar), 6.00-5.93 (1H, =C<u>H</u>), 5.37 (2H, O-C<u>H</u>₂-N), 5.04-5.00 (2H, =C<u>H</u>₂), 4.62 (2H, Ar-C<u>H</u>₂-N) and 3.34-3.32 (2H, CH=CH₂-C<u>H</u>₂).

PDMS-Bz:

¹**H NMR (400MHz, CDCl₃) δ (ppm):** 7.41-6.79 (16H, Ar), 5.34 (4H, O-C<u>H₂</u>-N), 4.61 (4H, Ar-C<u>H₂</u>-N), 2.59-2.55 (4H, Ar-C<u>H₂</u>), 1.61-1.57 (4H, Ar-CH₂-C<u>H₂</u>), 0.61-0.57 (4H, C<u>H₂</u>-Si) and 0.08-0.04 (54H, C<u>H₃-Si-CH₃</u>).

¹³C NMR (400 MHz, CDCl3) δ (ppm): 148.5-118.1 (aromatic carbons), 79.04 (O-<u>C</u>H₂-Ar), 50.76 (N-<u>C</u>H₂-Ar), 33.38-18.27 (aliphatic carbons) and 1.17-1.06 (<u>C</u>H₃-Si-<u>C</u>H₃).

TES-Bz:

¹H NMR (400 MHz, CDCl3) δ (ppm): 7.2-6.75 (4H, Ar), 4.84 (2H, O-C<u>H</u>₂-N), 3.97 (2H, Ar-C<u>H</u>₂-N), 3.82–3.80 (6H, O–C<u>H</u>₂–CH₃), 2.76–2.73 (2H, N–C<u>H</u>₂), 1.59 (2H, N–CH₂–C<u>H</u>₂), 1.23-1.20 (9H,O–CH₂–C<u>H</u>₃), 0.67–0.60 (2H,Si–C<u>H</u>₂).

¹³C NMR (400 MHz, CDCl3) δ (ppm): 156.7-115.54 (aromatic carbons), 82.44 (O-<u>C</u>H₂-N), 58.41 (O-<u>C</u>H₂-CH₃), 55.68 (N-<u>C</u>H₂-Ar), 54.12 (N-<u>C</u>H₂), 21.39 (N-CH₂-<u>C</u>H₂), 18.27 (O-CH₂-<u>C</u>H₃), 7.74 (Si-<u>C</u>H₂).

²⁹Si NMR (400 MHz, CDCl3) δ (ppm): -51.82 (Si-O-CH₂-CH₃).

Figure S1. FTIR spectra of OAP-Bz and TES-Bz.

Figure S2. ¹H and ¹³C NMR spectra of TES-Bz.

Figure S3. ²⁹Si NMR spectrum of TES-Bz.