Supporting Information

Fabrication of Mono-dispersed Silica-coated Quantum Dot-assembled Magnetic

Nanoparticles

San Kyeong¹, Cheolhwan Jeong¹, Han Young Kim^{2,3}, Do Won Hwang,^{2,3}, Homan Kang⁴, Jin-Kyoung Yang¹, Dong Soo Lee^{2,3}, Bong-Hyun Jun^{5,*}, and Yoon-Sik Lee^{1,*}

¹School of Chemical and Biological Engineering, Seoul National University, Seoul 151-747, Republic of Korea

²Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 110-744, Republic of Korea

³Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 151-747, Republic of Korea

⁴Department of Electrical Engineering and Computer Science, Seoul National University, Seoul 151-747, Republic of Korea ⁵Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, Republic of Korea

Table S1. Classification of the fabricated NPs.

Nanoparticles	Structure of exploited QDs	Emission peak of QD fluorescence	Property of exploited silica NPs
SiO ₂ @red-QDs NPs	CdSe@CdS@ZnS	620 nm	Bare SiO ₂ NPs ^a
Fe ₃ O ₄ @SiO ₂ @red-QDs NPs	CdSe@CdS@ZnS	620 nm	Fe ₃ O ₄ @SiO ₂ NPs ^b
Fe ₃ O ₄ @SiO ₂ @green-QDs NPs	CdSe@CdS@ZnS	540 nm	Fe ₃ O ₄ @SiO ₂ NPs ^b

a : NPs which were fabricated using general Stöber method[1]. *b* : NPs which were fabricated using by encapsulating PVP-coated Fe₃O₄ NPs[2].

Stober, W., A. Fink, and E. Bohn, Controlled Growth of Monodisperse Silica Spheres in Micron Size Range. Journal of Colloid and Interface Science, 1968. 26(1): p. 62-&
Rho, W.Y., et al., Facile synthesis of monodispersed silica-coated magnetic nanoparticles. Journal of Industrial and Engineering Chemistry, 2014. 20(5): p. 2646-2649.

Figure S1. Hydrodynamic size distribution analysis of NPs. a) Fe₃O₄@SiO₂ NPs, b) Fe₃O₄@SiO₂@QDs NPs.

Figure S2. Ultraviolet (UV) absorption (dashed line) and fluorescence emission (solid line) spectra of the original red and green QDs.

Figure S3. Fluorescence decay (405 nm excitation) of SiO₂@red-QDs NPs and Fe₃O₄@SiO₂@red-QDs NPs monitored at 583/75 nm and the corresponding instrument response function. The decays were fitted using a multi-exponential function and exhibited at least two distinct lifetimes (τ_1 and τ_2).