Supporting Information

A one-pot three-component synthesis of novel α-sulfamidophosphonates

under ultrasound irradiation and catalyst-free conditions

Billel Belhani^a, Malika Berredjem^{**}, Marc Le Borgne^b, ZouhairBouaziz^b, Jacques Lebreton^c and Nour-Eddine Aouf^a

^aLaboratory of Applied Organic Chemistry, Synthesis of biomolecules and molecular modelling Group, Sciences Faculty, Chemistry Department, BadjiMokhtar - Annaba University, Box 12, 23000 Annaba, Algeria

^bUniversité de Lyon, Université Lyon 1, Faculté de Pharmacie e ISPB, EA 4446 Biomolécules Cancer et Chimiorésistances, SFR Santé Lyon-EstCNRS UMS3453 e INSERM US7, 8 Avenue Rockefeller, F-69373 Lyon Cedex 8, France

^cUniversité de Nantes, UMR CNRS 6230, Chimie Et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UFR des Sciences et des Techniques, 2, rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France

*Corresponding author.Email: malika.berredjem@univ-annaba.org, mberredjem@yahoo.fr

1.Apparatus
2. Generalprocedure
Scheme 1: One-potsynthesis of α-sulfamidophosphonate under ultrasound irradiations 3
Scheme 2: Mechanistic proposal for synthesis of α-sulfamidophosphonate4
3.Selected Spectra data
¹ HNMR spectrum: diethyl phenyl(<i>N</i> -phenylsulfamoylamino)methylphosphonate 8
¹³ C NMR spectrum: diethyl phenyl(<i>N</i> -phenylsulfamoylamino)methylphosphonate8
³¹ P NMR spectrum: diethyl phenyl(<i>N</i> -phenylsulfamoylamino)methylphosphonate
Mass spectrum: diethyl phenyl(<i>N</i> -phenylsulfamoylamino)methylphosphonate9
¹ H NMR spectrum: diethyl phenyl(<i>N</i> -(1-phenylethyl)sulfamoylamino)methylphosphonate 10
³¹ P NMR spectrum: diethyl phenyl(<i>N</i> -(1-phenylethyl)sulfamoylamino)methylphosphonate 10
¹ H NMR spectrum: diethyl (<i>N</i> -(4-methoxyphenyl)sulfamoylamino)(phenyl)methylphosphonate 11
¹³ C NMR spectrum: diethyl (<i>N</i> -(4-methoxyphenyl)sulfamoylamino)(phenyl)methylphosphonate 11
³¹ P NMR spectrum: diethyl (<i>N</i> -(4-methoxyphenyl)sulfamoylamino)(phenyl)methylphosphonate 12
¹ H NMR spectrum: diethyl (<i>N</i> -(2-methoxyphenyl)sulfamoylamino)(phenyl)methylphosphonate 13
³¹ P NMR spectrum: diethyl (<i>N</i> -(2-methoxyphenyl)sulfamoylamino)(phenyl)methylphosphonate 13
¹ H NMR spectrum: diethyl (<i>N</i> -(3-fluorophenyl)sulfamoylamino)(phenyl)methylphosphonate 14
¹³ C NMR spectrum: diethyl (<i>N</i> -(3-fluorophenyl)sulfamoylamino)(phenyl)methylphosphonate 14
³¹ P NMR spectrum: diethyl (<i>N</i> -(3-fluorophenyl)sulfamoylamino)(phenyl)methylphosphonate 15
¹⁹ F NMR spectrum: diethyl (<i>N</i> -(3-fluorophenyl)sulfamoylamino)(phenyl)methylphosphonate 15
Mass spectrum: diethyl (N-(3-fluorophenyl)sulfamoylamino)(phenyl)methylphosphonate16
¹ H NMR spectrum: diethyl (<i>N</i> -(4-chlorophenyl)sulfamoylamino)(phenyl)methylphosphonate 17

¹ H NMR spectrum: diethyl phenyl(<i>N</i> -propylsulfamoylamino)methylphosphonate	18
Mass spectrum: dimethyl (N-cyclohexylsulfamoylamino)(phenyl)methylphosphonate	19
¹ H NMR spectrum: dimethyl (<i>N</i> -cyclohexylsulfamoylamino)(phenyl)methylphosphonate	20

1. Apparatus

Melting points were measured in open capillary tubes on an Electro thermal apparatus and uncorrected. Mass spectra were recorded on a shimadzu QP 1100 Ex mass spectrometer operating at an ionization potential of 70 eV. IR spectra were recorded as KBr pellets on a Perkin Elmer 781 spectrophotometer and an Impact 400 Nicolet FT-IR spectrophotometer. ¹H NMR, ¹³C NMR and³¹P NMR spectra were recorded in DMSO-d₆ or CDCl₃ solvents on a 250, 300 or 400MHz Bruker spectrometer with tetramethylsilane as internal reference.

Ultrasound assisted reactions were carried out using a FUNGILAB ultrasonic bathwith a frequency of 40 kHz and a nominal power of 250 W. The reactions were carried out in an open glass tube (diameter: 25 mm; thickness: 1 mm; volume: 20 mL) at room temperature. All reactions were monitored by thin layer chromatography (TLC) on silica Merck 60 F254 percolated aluminum plates.

2. General procedure

In a 10 ml round bottom flask taken a mixture of aldehyde (1 mmol) and sulfonamide (1 mmol) at room temperature and then triethylphosphite (1 mmol) was added. Then reaction mixture was subjected to the ultrasonication for appropriate time. After completion of the reaction, as indicated by TLC, silica gel; dichloromethane:methanol (9:1), a (4:1) mixture of diethyl ether and *n*-hexane was added and the mixture was cooled to 6° C overnight. The product was finally filtered and dried.

Scheme 1: One-potsynthesis of α -sulfamidophosphonate under ultrasound irradiations.

Scheme 2: Mechanistic proposal for synthesis of α -sulfamidophosphonate.

3. Selected *Spectral data:*

diethyl phenyl(N-phenylsulfamoylamino)methylphosphonate (Table 1, Entry 2a)

White crystal.m.p = 152-154 °C. Yield95%. R_f (DCM-MeOH : 95/5) = 0.32.Ms (*m*/*z*): 399 [M+1]. v_{max} (KBr)/cm⁻¹3210, 1675, 1387, 1262, 1151, 1023. δ_P (160 MHz, CDCl₃)19.61. δ_H (400 MHz, CDCl₃) 1.03 (t, *J* 7.2 Hz, 3H, CH₃), 1.29 (t, *J* 6.8 Hz, 3H, CH₃), 3.59–3.67 (m, 1H, CH₂), 3.82–3.89 (m, 1H, CH₂), 4.06–4.17 (m, 2H, CH₂), 4.81 (dd, *J* 8.8 Hz,1H, CH), 5.92 (t, *J* 6.8 Hz, 1H, NH), 6.47 (s, 1H, NH), 6.79-6.81 (m, 2H, H-Ar), 7.01-7.25 (m, 8H, H-Ar). δ_c (100 MHz, CDCl₃) 16.3, 16.5, 54.8, 63.9, 64.1, 119.7, 124.4, 128.3, 128.4, 128.7, 128.9, 129.3, 134.2, 136.8. Anal. Calc. for C₁₇H₂₃N₂O₅PS: C 51.25, H 5.82, N 7.03. Found: C 51.15, H 5.80, N 7.20%. M= 398.

diethyl phenyl(N-(1-phenylethyl)sulfamoylamino)methylphosphonate (Table 1, Entry 2c)

White powder.mp = 138-140 °C. Yield90%. R_f (DCM-MeOH : 95/5) = 0.36. Ms (*m/z*): 427 [M+1]. v_{max} (KBr)/cm⁻¹3330, 3040, 1622, 1355, 1230, 1155, 1103. δ_P (160 MHz, CDCl₃) 20.16. δ_H (400 MHz, CDCl₃) 1.08 (t, *J* 7.2 Hz, 3H, CH₃), 1.12 (d, *J* 6.6 Hz, 3H, CH₃), 1.32 (t, *J* 7 Hz, 3H, CH₃), 3.69 (m,

1H, CH), 3.92 (m, 1H, CH), 4.10–4.19 (m, 2H, CH₂), 4.27–4.39 (m, 2H, CH₂), 4.73 (dd, *J* 11.2 Hz, 1H, CH), 5.41 (t, *J* 7.7 Hz, 1H, NH), 7.15-7.27 (m, 5H, H-Ar), 7.28-7.45 (m, 5H, H-Ar). δ_c (100 MHz, CDCl₃) 17, 21.3, 48.2, 56, 62.2, 115.7, 122.8, 124, 126.3, 128.5, 129.4, 142.5, 145.1. Anal. Calc. for C₁₉H₂₇N₂O₅PS: C 53.51, H 6.38, N 6.57. Found: C 53.02, H 6.21,N 6.35%. M=426.

diethyl (N-(4-methoxyphenyl)sulfamoylamino)(phenyl)methylphosphonate(Table 1, Entry 2d)

Oil.Yield87%. R_f (DCM-MeOH : 95/5) = 0.39.Ms (*m/z*): 429 [M+1]. v_{max} (KBr)/cm⁻¹3323, 1610, 1315, 1236, 1167, 1050. δ_P (160 MHz, CDCl₃) 21.37. δ_H (400 MHz, CDCl₃) 1.21 (t, *J* 7 Hz, 3H, CH₃), 1.26 (t, *J* 7 Hz, 3H, CH₃), 3.75 (s, 3H, CH₃), 3.94-4.01 (m, 2H, CH₂), 4.00–4.15 (m, 2H, CH₂), 5.03 (d, *J* 10.8 Hz, 1H, CH), 6.62-6.81 (2d, *J* 8.9 Hz, 2H, H-Ar), 7.24-7.49 (m, 7H, H-Ar). δ_c (100 MHz, CDCl₃) 16.3, 16.4, 55.4, 63.1, 63.3, 70, 71.6, 114.1, 123.2, 127, 127.1, 128, 128.1, 128.2, 128.3, 128.5, 129.6, 136.5, 136.6. Anal. Calc. for C₁₈H₂₅N₂O₆PS: C 50.46, H 5.88, N 6.54. Found: C 50.99, H 6.15, N 6.80%. M=428.

diethyl (N-(2-methoxyphenyl)sulfamoylamino)(phenyl)methylphosphonate (Table 1, Entry 2e)

White crystal.mp = 145-147 °C. Yield85%.R_f (DCM-MeOH : 95/5) = 0.38.Ms (m/z): 429 [M+1]. v_{max} (KBr)/cm⁻¹3300, 1655, 1311, 1228, 1151, 1080. δ_P (160 MHz, CDCl₃) 19.53. δ_H (400 MHz, CDCl₃) 1.01 (t, J 7.1 Hz, 3H, CH₃), 1.29 (t, J 7.1 Hz, 3H, CH₃), 3.81 (s, 3H, CH3), 3.54–3.83 (m, 1H, CH2), 3.84–3.87 (m, 1H, CH2), 4.04-4.16 (m, 2H, CH2), 4.74 (dd, J 8.8 Hz, 1H, CH), 6.00 (t, J 7.1 Hz, 1H, NH), 6.55-6.57 (d, J 8 Hz, 1H, H-Ar), 6.74 (s, 1H, NH), 6.83-6.87 (t, J 7.6 Hz, 1H, H-Ar), 6.91-6.95 (t, J 7.5 Hz, 1H, H-Ar), 7.08-7.14 (m, 5H, H-Ar), 7.39-7.43 (d, J 6.9 Hz, 1H, H-Ar). δ_c (100 MHz, CDCl₃) 16.3, 16.4, 55.9, 58.2, 68.2, 69, 109.9, 117.4, 120.8, 123.6, 123.9, 127.7, 127.7, 128.1, 128.3, 129.1, 138.4, 139.6. Anal. Calc. for C₁₈H₂₅N₂O₆PS: C 50.46, H 5.88, N 6.54. Found: C 50.95, H 5.71, N 6.68%. M=428.

diethyl (N-(3-fluorophenyl)sulfamoylamino)(phenyl)methylphosphonate (Table 1, Entry 2f)

White crystal.mp = 109-111 °C.Yield92%.R_f (DCM-MeOH : 95/5) = 0.45.Ms (*m*/*z*): 417 [M+1]. ν_{max} (KBr)/cm⁻¹3315, 1688, 1319, 1225, 1140, 1032. δ_{F} (375 MHz, CDCl₃) -111.62. δ_{P} (160 MHz, CDCl₃) 22.21. δ_{H} (400 MHz, CDCl₃) 1.1 (t, *J* 7.1 Hz, 3H, CH₃), 1.29 (t, *J* 7 Hz, 3H, CH₃), 3.59–3.69 (m, 1H, CH2), 3.87–3.96 (m, 1H, CH2), 4.04-4.18 (m, 2H, CH2), 4.71 (dd, *J* 7.7 Hz, 1H, CH), 4.97 (t, *J* 8.6 Hz,1H, NH), 6.24-7.03 (m, 4H, H-Ar), 7.25-7.46 (m, 5H, H-Ar). δ_{c} (100 MHz, CDCl₃) 16.1, 16.4, 56.2, 64, 64.1, 106.5, 106.7, 110.6, 110.8, 114.7, 128.2, 128.7, 130.2, 130.3, 134, 138.5, 161.8.Anal. Calc. for C₁₇H₂₂FN₂O₅PS: C 49.03, H 5.33, N 6.73. Found: C 48.50, H 5.62, N 6.53%.M=416.

diethyl (N-(4-chlorophenyl)sulfamoylamino)(phenyl)methylphosphonate(Table 1, Entry 2j)

White crystal.mp =116-118 °C. Yield91%.R_f (DCM-MeOH : 95/5) = 0.46.Ms (*m*/*z*): 433 [M+1]. ν_{max} (KBr)/cm⁻¹3210, 1675, 1387, 1262, 1151, 1023. δ_P (100 MHz, CDCl₃) 19.66. δ_H (300 MHz, CDCl₃) 1.10 (t, *J* 6.9 Hz,3H, CH₃), 1.28 (t, *J* 7.1 Hz, 3H,CH₃), 3.61–3.69 (m, 1H, CH₂), 3.88–3.96 (m, 1H, CH₂), 4.07–4.14 (m, 2H, CH₂), 4.78 (dd, *J* 7.7 Hz, 1H, CH), 4.82 (t, *J* 8.2 Hz, 1H, NH), 6.50 (d, *J* 8.85 Hz, 2H,H-Ar), 7.03 (d, *J* 7.1 Hz, 2H,H-Ar), 7.29-7.35 (m, 5H, H-Ar). δ_c (75 MHz, CDCl₃) 16.3, 16.4, 55.5, 63.5, 63.7, 109.3, 111.2, 115.2, 124.1, 126.8, 128.3, 128.9, 131.4, 136.6, 148.4, 149.3, 163.2. Anal. Calc. for C₁₇H₂₂ClN₂O₅PS: C 47.17, H 5.12, N 6.47. Found: C 46.95, H 5.58, N 6.46%.M=432.

diethyl phenyl(*N*-propylsulfamoylamino)methylphosphonate (Table 1, Entry 2n)

White powder.mp = 136-138 °C. Yield88%.R_f (DCM-MeOH : 95/5) = 0.41.Ms (*m*/*z*): 366 [M+1]. v_{max} (KBr)/cm⁻¹3265, 2978, 1593, 1372, 1264, 1154, 1077. δ_P (120 MHz, CDCl₃) 19.88. δ_H (300 MHz, CDCl₃) 0.72 (t, *J* 7.3 Hz, 3H, CH₃), 1.09 (t, *J*7.1 Hz, 3H, CH3), 1.14-1.29 (m, 2H, CH2), 1.37 (t, *J*7.1 Hz, 3H,CH3), 2.54 (m, 1H, CH₂-N), 2.82 (m, 1H, CH₂-N), 3.67–3.76 (m, 1H, CH₂), 3.89–3.97 (m, 1H, CH₂), 4.07 (t, *J*6 Hz, 1H, NH), 4.18–4.27 (m, 2H, CH₂), 4.75 (dd, *J* 8.8 Hz, 1H, CH), 6.03 (t, *J*6.6 Hz,1H,NH), 7.28-7.52 (m, 5H, H-Ar). δ_c (75 MHz, CDCl₃) 11.1, 16.3, 16.4, 21.7, 24.5, 55.4, 66.2, 66.3, 124.6, 127.1, 127.3, 129, 129.2, 137.1. Anal. Calc. for C₁₄H₂₅N₂O₅PS: C 46.14, H 6.92, N 7.69. Found: C 46.10, H 7.08, N 7.55%.M=365.

dimethyl (N-cyclohexylsulfamoylamino)(phenyl)methylphosphonate (Table 1, Entry 2q)

White crystal.mp = 137-139 °C. Yield94%.R_{*f*} (DCM-MeOH : 95/5) = 0.39.Ms (*m*/*z*): 399 [M+23]. ν_{max} (KBr)/cm⁻¹3468, 3065, 1631, 1368, 1259, 1152, 1100. δ_P (120 MHz, CDCl₃) 19.98. δ_H (300 MHz, CDCl₃) 0.9 (m, 4H, 2CH2), 1.1 (m, 2H, CH2), 1.39 (m, 2H, CH2), 1.55 (m, 1H, CH2), 1.84 (m, 1H, CH2), 2.45 (m, 1H, CH), 3.47 (d, *J* 9 Hz,3H, CH₃), 3.67 (d, *J*7.2 Hz, 3H, CH₃), 4.61 (dd, *J* 6.8 Hz, 1H, CH), 6.72 (d, *J*6.5 Hz,1H, NH), 7.27-7.51 (m, 5H, H-Ar). δ_c (75 MHz, CDCl₃) 21.5, 24.6, 25.1, 33.9, 53.4, 53.5, 56.1, 126.2, 129.5, 129.8, 136.5. Anal. Calc. for C₁₅H₂₅N₂O₅PS: C 47.86, H 6.69, N 7.44. Found: C 48.03, H 6.65, N 7.40%. M=376.

¹H NMR spectrum: diethyl phenyl(N-phenylsulfamoylamino)methylphosphonate

 $^{13}{\rm C}\ {\rm NMR}\ {\rm spectrum:}\ {\rm diethyl\ phenyl} (N\mbox{-phenylsulfamoylamino}) methyl phosphonate$

 ${}^{31}{\rm P}\ {\rm NMR}\ {\rm spectrum:\ diethyl\ phenyl} (N-phenylsulfamoylamino) methylphosphonate$

 $^1\!H\ NMR\ spectrum:\ diethyl\ phenyl (N-(1-phenylethyl) sulfamoylamino) methyl phosphonate$

 ${}^{31}{\rm P}\ {\rm NMR}\ {\rm spectrum:\ diethyl\ phenyl} (N-(1-phenylethyl) {\rm sulfamoylamino}) methyl phosphonate$

¹H NMR spectrum: diethyl (*N*-(4-methoxyphenyl)sulfamoylamino)(phenyl)methylphosphonate

 $^{13}{\rm C\ NMR\ spectrum:\ diethyl\ } (N-(4-methoxyphenyl) sulfamoylamino) (phenyl) methyl phosphonate$

³¹P NMR spectrum: diethyl (*N*-(4-methoxyphenyl)sulfamoylamino)(phenyl)methylphosphonate

¹H NMR spectrum: diethyl (N-(2-methoxyphenyl)sulfamoylamino)(phenyl)methylphosphonate

 $^{31} P \ NMR \ spectrum: \ diethyl \ (N-(2-methoxyphenyl) sulfamoylamino) (phenyl) methyl phosphonate$

¹H NMR spectrum: diethyl (N-(3-fluorophenyl)sulfamoylamino)(phenyl)methylphosphonate

 $^{13}{\rm C}\ {\rm NMR}\ {\rm spectrum:}\ {\rm diethyl}\ (N-(3-fluorophenyl) {\rm sulfamoylamino}) ({\rm phenyl}) {\rm methyl phosphonate}$

 ${}^{31}P\ NMR\ spectrum:\ diethyl\ (N-(3-fluorophenyl)sulfamoylamino)(phenyl)methylphosphonate$

 $^{19} {\rm F} \ {\rm NMR} \ {\rm spectrum: \ diethyl} \ (N-(3-fluorophenyl) {\rm sulfamoylamino}) (phenyl) {\rm methyl phosphonate}$

Mass spectrum: diethyl (N-(3-fluorophenyl)sulfamoylamino)(phenyl)methylphosphonate

¹H NMR spectrum: diethyl (N-(4-chlorophenyl)sulfamoylamino)(phenyl)methylphosphonate

¹H NMR spectrum: diethyl phenyl(*N*-propylsulfamoylamino)methylphosphonate

Mass spectrum: dimethyl (N-cyclohexylsulfamoylamino)(phenyl)methylphosphonate

 $^{1}H\ NMR\ spectrum:\ dimethyl\ (N-cyclohexylsulfamoylamino)(phenyl) methylphosphonate$