Electronic supplementary information (ESI[†])

A comparative study of optical nonlinearities of *trans*- A₂Bcorroles in solution and in aggregated State

Antara Garai,^a Samir Kumar, ^b Woormileela Sinha, ^a Chandra Shekhar Purohit, ^a Ritwick Das^{*, b} and Sanjib Kar^{*, a}

^aSchool of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar – 751005, India.
^bSchool of Physical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar – 751005, India.

E-mail: ritwick.das@niser.ac.in and sanjib@niser.ac.in

Computational details: All the calculations were performed with the program package TURBOMOLE 6.4 using density functional theory (DFT).^{1, 2} The BP86 functional and TZVP basis set together with the resolution-of-the-identity (RI) approximation³⁻⁵ (RI-BP86/TZVP in short) was employed for the structure optimization procedure. Numerical frequency calculations of the optimized structures were done to ensure that the optimized structures were true minima not the transition states.

- Ahlrichs, R.; Baer, M.; Haeser, M.; Horn, H.; Koelmel, C., Electronic structure calculations on workstation computers: the program system TURBOMOLE. *Chem. Phys. Lett.* 1989, *162*, 165-9.
- 2. Treutler, O.; Ahlrichs, R., Efficient molecular numerical integration schemes. J. Chem. Phys. 1995, 102, 346-54.
- 3. Vahtras, O.; Almloef, J.; Feyereisen, M. W., Integral approximations for LCAO-SCF calculations. *Chem. Phys. Lett.* **1993**, *213*, 514-18.
- 4. Eichkorn, K.; Treutler, O.; Oehm, H.; Haeser, M.; Ahlrichs, R., Auxiliary basis sets to approximate Coulomb potentials. *Chem. Phys. Lett.* **1995**, *242*, 652-60.
- 5. Eichkorn, K.; Treutler, O.; Oehm, H.; Haeser, M.; Ahlrichs, R., Auxiliary basis sets to approximate Coulomb potentials. *Chem. Phys. Lett.* **1995**, *240*, 283-90.

Aggregation properties of 3: The aggregates of 3 were prepared by mixing 1 mL of water to a 1 mL DMF solution of 3 (2.04×10^{-5} M) with constant stirring at room temperature (298K). 3 in a 1:1 DMF and H₂O mixture (mole fraction of DMF was ~0.2) shows a Soret band at around 412 nm (Fig. S21). A time dependent profile of UV-Vis spectra was recorded for **3** in a 1:1 DMF and H₂O mixture. Absorbance spectra were recorded on 10 minutes interval (Fig. S21). With the progression of time the Soret band of corrole, **3**, decreases in intensity, however a new band at around 503 nm grows slowly. In addition to this new band, the intensity of the Q-band also slightly increases. A significant red shift of the Q band was observed in the UV-Visible spectra of 3 in a 1:1 mixture of DMF and H₂O in comparison to the spectra of 3 in the pure toluene solvent. A new band at around 724 nm also appears. As per the previous literature, these changes in UV-Vis spectra suggest the formation of aggregates.¹ The formation of aggregates in binary solvent mixture for porphyrin related derivatives is not uncommon.¹ The dynamic light scattering experiment (DLS) of these solutions was performed to measure the size distribution of these aggregates (Fig. S22). A time dependent profile of DLS measurement was also done on 10 minutes interval. However it was observed that the size of the aggregates does not change significantly with the progression of time. Average size distribution of the aggregates was observed in the range of 390-410 nm.

(a) O. Valdes-Aguilera and D. C. Neckers, Acc. Chem. Res. 1989, 22, 171; (b) P. R. Ojeda, I. A. K. Amashta, J. R. Ochoa and I. L. Arbeloa, J. Chem. Soc. Faraday Trans. 2, 1988, 84, 1; (c) J. Hessemann, J. Am. Chem. Soc. 1980, 102, 2167; (d) W. Mooney, P. E. Brown, J. C. Russel, S. B. Costa, L. G. Pederson and D. G. Whitten, J. Am. Chem. Soc., 1984, 106, 5659; (e) W. F. Mooney and D. G. Whitten, J. Am. Chem. Soc. 1986, 108, 5712; (f) H. Fidder, J. Terpstra and D. A. Wiersma, J. Chem. Phys. 1991, 94, 6895; (g) W. West and B. H. Carroll, The Theory of Photographic Processes, 3rd ed., T. H. James, Ed., The McMillan Company: New York, 1966; Chapter 12; (h) M. Furuki, K. Ageishi, S. Kim, I. Ando and L. S. Pu, Thin Solid Films, 1989, 180, 193; (i) Y.-w. Jun, J.-s. Choi and J. Cheon, Angew. Chem., Int. Ed., 2006, 45, 3414; (j) A. Agostiano, P. Cosma, M. Trotta, L. Monsù –Scolaro and N. Micali, J. Phys. Chem. B, 2002, 106, 12820; (k) S. Boussaad, J. A. DeRose and R. M. Leblanc, Chem. Phys. Lett. 1995, 246, 107.

- Figure S1. Z-scan experimental set-up using Yb-fiber laser source; FI: Fiber laser; HWP:Half-wave plate; PBS: Polarizing beam-splitter; L: Lens (f =100 mm); TS: Translation stage (10 cm travel; S: Sample; A: Aperture (S ~ 0.3); PD1: Reference photodetector; PD2: Signal photodetector
- **Figure S2.** ¹H NMR spectrum of 2,2'-((2-bromo-5-fluorophenyl)methylene)bis(1H-pyrrole) in CDCl₃.
- **Figure S3.** ESI- MS spectrum of 2,2'-((2-bromo-5-fluorophenyl)methylene)bis(1H-pyrrole) in CH₃CN shows the measured spectrum with isotopic distribution pattern.
- **Figure S4.** ¹H NMR spectrum of 5,10,15-Tris[3,4-(1,4-dioxan)phenyl]corrole, **1** in CDCl₃.
- **Figure S5.** ESI- MS spectrum of 5,10,15-Tris[3,4-(1,4-dioxan)phenyl]corrole, **1** in CH₃CN shows the measured spectrum with isotopic distribution pattern.
- **Figure S6.** Fluorescence decay profiles of (a) 1, (-----); $\lambda em = 676$ nm, (b) 2, (------); $\lambda em = 654$ nm, and (c) 3, (------); $\lambda em = 661$ nm. The black line represents experimental data, whereas the red line represents best fit.
- **Figure S7.** ¹H NMR spectrum of 10-[4-(chloroacetoxy)phenyl]-5,15-bis(2-bromo-5fluorophenyl) corrole, **2**, in CDCl₃.
- **Figure S8.** ¹³C NMR spectrum of 10-[4-(chloroacetoxy)phenyl]-5,15-bis(2-bromo-5fluorophenyl) corrole, **2**, in CDCl₃.
- Figure S9. ESI- MS spectrum of 10-[4-(chloroacetoxy)phenyl]-5,15-bis(2-bromo-5-fluorophenyl) corrole, 2, in CH₃CN shows the measured spectrum with isotopic distribution pattern.
- **Figure S10.** ¹H NMR spectrum of 10-(4-hydroxyphenyl)-5,15-bis(2-bromo-5-fluorophenyl) corrole, **3** in CDCl₃.
- **Figure S11.** ¹³C NMR spectrum of 10-(4-hydroxyphenyl)-5,15-bis(2-bromo-5-fluorophenyl) corrole, **3** in CDCl₃.
- Figure S12. ESI- MS spectrum of 10-(4-hydroxyphenyl)-5,15-bis(2-bromo-5-fluorophenyl) corrole, **3** in CH₃CN shows the measured spectrum with isotopic distribution pattern.
- **Figure S13.** X-ray single crystal structure analysis of 10-(4-hydroxyphenyl)-5,15-bis(2bromo-5-fluorophenyl) corrole, **3**, (a) O–H...N interactions, [2.86 Å] (b) π - π stacking interactions [3.51 Å]. The entries in square brackets are the distances. (c)

ORTEP diagram of **3**. Solvent molecules are removed for clarity. Ellipsoids are drawn at 30% probability.

- **Figure S14.** SEM images of the **1** in dichloromethane methanol mixture; nanospheres are seen.
- Figure S15. SEM images of the 3 in dichloromethane methanol mixture; nanodiscs are seen.
- Figure S16. Particle size distribution histograms of nanodiscs of **3**.
- **Figure S17.** EDX elemental analysis obtained from the nanospheres of **1** showing the presence of the entire constituent elements: C, N, and O.
- **Figure S18.** EDX elemental analysis obtained from the nanobulbs of **2** showing the presence of the entire constituent elements: C, N, O, F, Cl, and Br.
- **Figure S19.** EDX elemental analysis obtained from the nanodiscs of **3** showing the presence of the entire constituent elements: C, N, O, F, and Br.
- **Figure S20.** DFT optimized (BP-86/TZVP) structures of (a) 1, (b) 2, and (c) 3.
- Figure S21 Changes in the UV-Vis spectrum of **3** on letting it stay in a DMF and $H_2O(1:1)$ mixture. Measurements are made at 10 minutes interval.
- Figure S22 Changes in particle size distribution of the aggregates of 3 on letting it stay in a DMF and $H_2O(1:1)$ mixture. Measurements are made at 10 minutes interval.
- **Table S1.** σ_{TPA} values for related compounds.

Figure S1. Z-scan experimental set-up using Yb-fiber laser source; FI: Fiber laser; HWP:Half-wave plate; PBS: Polarizing beam-splitter; L: Lens (f =100 mm); TS: Translation stage (10 cm travel; S: Sample; A: Aperture (S ~ 0.3); PD1: Reference photodetector; PD2: Signal photodetector

Figure S2. ¹H NMR spectrum of 2,2'-((2-bromo-5-fluorophenyl)methylene)bis(1H-pyrrole) in CDCl₃.

Figure S3. ESI- MS spectrum of 2,2'-((2-bromo-5-fluorophenyl)methylene)bis(1H-pyrrole) in CH₃CN shows the measured spectrum with isotopic distribution pattern.

Figure S4. ¹H NMR spectrum of 5,10,15-Tris[3,4-(1,4-dioxan)phenyl]corrole, 1 in CDCl₃.

Figure S5. ESI- MS spectrum of 5,10,15-Tris[3,4-(1,4-dioxan)phenyl]corrole, **1** in CH₃CN shows the measured spectrum with isotopic distribution pattern.

Figure S6. Fluorescence decay profiles of (a) **1**, (-----); $\lambda em = 676$ nm, (b) **2**, (------); $\lambda em = 654$ nm, and (c) **3**, (------); $\lambda em = 661$ nm. The black line represents experimental data, whereas the red line represents best fit.

Figure S7. ¹H NMR spectrum of 10-[4-(chloroacetoxy)phenyl]-5,15-bis(2-bromo-5fluorophenyl) corrole, **2**, in CDCl₃.

Figure S8. ¹³C NMR spectrum of 10-[4-(chloroacetoxy)phenyl]-5,15-bis(2-bromo-5fluorophenyl) corrole, **2**, in CDCl₃.

Figure S9. ESI- MS spectrum of 10-[4-(chloroacetoxy)phenyl]-5,15-bis(2-bromo-5-fluorophenyl) corrole, 2, in CH₃CN shows the measured spectrum with isotopic distribution pattern.

Figure S10. ¹H NMR spectrum of 10-(4-hydroxyphenyl)-5,15-bis(2-bromo-5-fluorophenyl) corrole, **3** in CDCl₃.

Figure S11. ¹³C NMR spectrum of 10-(4-hydroxyphenyl)-5,15-bis(2-bromo-5-fluorophenyl) corrole, **3** in CDCl₃.

Figure S12. ESI- MS spectrum of 10-(4-hydroxyphenyl)-5,15-bis(2-bromo-5-fluorophenyl) corrole, **3** in CH₃CN shows the measured spectrum with isotopic distribution pattern.

Figure S13. X-ray single crystal structure analysis of 10-(4-hydroxyphenyl)-5,15-bis(2-bromo-5-fluorophenyl) corrole, 3, (a) O–H...N interactions, [2.86 Å] (b) π- π stacking interactions [3.51 Å]. The entries in square brackets are the distances. (c) ORTEP diagram of 3. Solvent molecules are removed for clarity. Ellipsoids are drawn at 30% probability.

Figure S14. SEM images of the 1 in dichloromethane — methanol mixture; nanospheres are seen.

Figure S15. SEM images of the 3 in dichloromethane — methanol mixture; nanodiscs are seen.

Figure S16. Particle size distribution histograms of nanodiscs of 3.

Quantitative results

Element	Weight%		
CK	59.95		
NK	15.59		
OK	24.46		
Totals	100.00		

Figure S17. EDX elemental analysis obtained from the nanospheres of **1** showing the presence of the entire constituent elements: C, N, and O.

Figure S18. EDX elemental analysis obtained from the nanobulbs of **2** showing the presence of the entire constituent elements: C, N, O, F, Cl, and Br.

Figure S19. EDX elemental analysis obtained from the nanodiscs of **3** showing the presence of the entire constituent elements: C, N, O, F, and Br.

Figure S20. DFT optimized (BP-86/TZVP) structures of (a) 1, (b) 2, and (c) 3.

Figure S21 Changes in the UV-Vis spectrum of **3** on letting it stay in a DMF and H₂O (1:1) mixture. Measurements are made at 10 minutes interval.

Figure S22 Changes in particle size distribution of the aggregates of **3** on letting it stay in a DMF and H₂O (1:1) mixture. Measurements are made at 10 minutes interval.

Compound	Solvent	Method	<i>n</i> ₂	$\sigma_{ ext{TPA}}$	Ref.
TTC	CH ₂ Cl ₂	Z-scan	-60×10 ⁻¹⁶ (cm ² /W)	1408-5410 GM	16
TPC	CH ₂ Cl ₂	Z-scan	-100×10 ⁻¹⁶ (cm ² /W)	2301-2576 GM	16
PTTC	CH_2Cl_2	Z-scan	-5.1×10 ⁻¹⁶ (cm ² /W)	233-543 GM	16
GeTTC	CH_2Cl_2	Z-scan	$-7.6 \times 10^{-16} (\text{cm}^2/\text{W})$	112-239 GM	16
A ₃ -Corroles	CCl ₄			130 ± 26 GM	15
DH ₃ CD	CH_2Cl_2	Z-scan		1100 GM	54
DH ₂ CD	CH_2Cl_2	Z-scan		3700 GM	54
DZnCD	CH_2Cl_2	Z-scan		4600 GM	54
H ₂ TPP	Toluene			1-25 GM	55
1a	CHCl ₃			56 (8) GM	56
1b	CHCl ₃			187 (62) GM	56
CuTPP	CHCl ₃			101 (32 GM	56
PEP	CHCl ₃			<5 GM	56
AF-250	CHCl ₃			30 GM	56
BDPAS-porphyrin	Different			1000 GM	57
dyad	Solvents				
4D	CHCl ₃			370 GM	58
5D	CHCl ₃			7600 GM	58
5M	CHCl ₃			1800 GM	58
7M	CHCl ₃			1200 GM	58
8	CHCl ₃			1000 GM	58
Porphycenes	CHCl ₃	Z-scan		8-21×103 GM	59
1	Toluene	Z-scan	16.8×10 ⁻¹⁸ (m ² /W)	$5.7 \times 10^{-12} \text{ m/W}$	This work
2	Toluene	Z-scan	7.8×10 ⁻¹⁸ (m ² /W)	1.9×10 ⁻¹² m/W	This work
3	Toluene	Z-scan	25.9×10 ⁻¹⁸ (m ² /W)	17×10 ⁻¹² m/W	This work
1-nano	_	Z-scan	$1.1 \times 10^{-15} (m^2/W)$	$4.0 \times 10^{-10} \text{ m/W}$	This work
2-nano	_	Z-scan	$1.9 \times 10^{-15} (m^2/W)$	2.0×10 ⁻¹⁰ m/W	This work
3-nano	_	Z-scan	$71.8 \times 10^{-15} (m^2/W)$	444×10 ⁻¹⁰ m/W	This work

Table S1 σ_{TPA} values for related compounds