
## **Supporting Information**

## Low cost visible light driven plasmonic Ag-AgBr/BiVO<sub>4</sub> system: fabrication and application as an efficient photocatalyst

Yan Sang,<sup>a</sup> Yan Huang,<sup>b</sup> Wu wang,<sup>a</sup> Zhen Fang<sup>a</sup> and BaoyouGeng<sup>a</sup>\*

<sup>a</sup> Center for Nano Science and Technology, College of Chemistry and Materials Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Anhui Normal University, Wuhu 241000, P. R. China. <sup>b</sup> The Library of Anhui Normal University, Wuhu 241000, P. R. China. Email: <u>bygeng@ahnu.edu.cn</u>

## **Additional images:**



**Fig. S1.** (a) Low- and (b) high-magnification SEM images of  $Al_2O_3$  structures. (c) Low- and (b) high-resolution SEM images of Ag-AgBr/Al<sub>2</sub>O<sub>3</sub>. (e) and The degradation of RhB by Ag-AgBr/Al<sub>2</sub>O<sub>3</sub>. (f) Time-dependent photo degradation curve of RhB with pure BiVO<sub>4</sub> (red line), Ag-AgBr/Al<sub>2</sub>O<sub>3</sub> (blue line) and Ag-AgBr/BiVO<sub>4</sub> (black line).

**Explanation:** Al<sub>2</sub>O<sub>3</sub> nanostructures were fabricated according the method reported elsewhere (Chem. Commun., 2011, 47, 7054). Through the same method of Ag-AgBr/BiVO<sub>4</sub>, Ag-AgBr/Al<sub>2</sub>O<sub>3</sub> was prepared. Fig. S1a and b are typical SEM images of the as-prepared hollow Al<sub>2</sub>O<sub>3</sub> nanostructures. Fig. S1c and d show the SEM images of the as-prepared Ag-AgBr/Al<sub>2</sub>O<sub>3</sub> nanostructures. The performance of Ag-AgBr/Al<sub>2</sub>O<sub>3</sub> photocatalyst has also been performed through photodegradation of RhB under visible light irradiation ( $\lambda \ge 420$  nm). The complete degradation of RhB by Ag-AgBr/Al<sub>2</sub>O<sub>3</sub> takes nearly 24 min.