## **Supporting Information**

# Electrocatalytic reduction of PhCH<sub>2</sub>Br on Ag-Y zeolite modified electrode

Huan Wang, Li He, Guo-Jiao Sui and Jia-Xing Lu\*

Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China

#### 1. Materials and Instruments

All reagents were used as received.

XRD patterns were collected using a Rigaku Ultima IV diffractometer with nickel filtered Cu K $\alpha$  radiation at 35 kV and 25 mA.

SEM images were obtained on a Hitachi S-4800 field-emission scanning microscope.

TEM analyses were carried on a FEI TECNAI G2 F30 operating at 300 KV.

The amounts of Si, Al, Na and Ag etc. in zeolites were quantified by ICP on a Thermo IRIS Intrepid II XSP atomic emission spectrometer after dissolving the samples in HF solution.

Nitrogen adsorption—desorption isotherms at -196 °C were obtained on a BELSORP-max volumetric adsorption analyzer. The samples were out-gassed at 300 °C for 6 h before the adsorption measurement. The specific surface area was determined by the BET method using the data points of P/P<sub>0</sub> in the range of about 0.01-0.2 and the micropore surface area and the micropore volume of the samples were calculated using the *t*-plot method.

XPS was measured using a Thermo Fisher Scientific ESCALAB 250 spectrometer with Al K $\alpha$  radiation (1486.6 eV) as incident beam with a monochromator.

 $H_2$ -TPR and  $O_2$ -TPO analysis was carried out with the Quantachrome Chem 3000 apparatus.

All electrochemical experiments were performed on a CHI 660D electrochemical work station (Chenhua, Shanghai, China) in an undivided cell.

## 2. General procedure

### 2.1 Prepare Ag-exchanged Y zeolite

Prior to Ag<sup>+</sup> ion exchange, the impurity extraframework cations of NaY were removed by treatment in 0.1 M NaNO<sub>3</sub> for 2 h, followed by filtering, washing with distilled water and drying. The catalysts were prepared by impregnation of 0.5 g NaY in 50 mL 0.04 M AgNO<sub>3</sub> solution for 2 h under stirring in the dark at room temperature. After filtering, washing 3 times with distilled water and drying at 100°C for 1 h, a white powder was obtained. Then the samples were calcinated at 350°C for 3 h to obtain a little yellow powder, labeled Ag-Y.

#### 2.2 Prepare Ag-Y/GC modified electrodes

Prior to the modification, GC electrode was polished with  $0.5~\mu m$  alumina, and then sonicated for 5 min each in distilled water and acetone. 3 mg Ag-Y was adhered to the electrode surface with  $10~\mu L$  POV as adhesive. The modified electrode, labeled Ag-Y/GC, was air dried.

#### 2.3 Electrochemical process

Linear sweep voltammograms were carried out using a traditional three-electrode system with a GC (d = 2 mm), Ag (d = 2 mm), or Ag-Y/GC (d = 2 mm) as working electrode, a Pt wire as counter electrode and a Ag/AgI/I $^-$  as reference electrode, in MeCN – 0.1 M TEABF $_4$  – 5 mM PhCH $_2$ Br solution.

Potentiostatic electrolysis were carried out with a Ag, GC or Ag-Y/GC as working electrode, a Mg rod as sacrificial anode and a Ag/AgI/I as reference electrode, in MeCN – 0.1 M TEABF<sub>4</sub> – 0.1 M PhCH<sub>2</sub>Br solution in the presence of  $N_2$  or  $CO_2$ . The products were extracted by diethyl ether and quantitatively analyzed by GC instrument (GC-2014, Shimadzu). For the electrocarboxylation carried out in the presence of  $CO_2$ , the electrolyte should be esterified by addition of anhydrous  $K_2CO_3$  and methyl iodide at 50-60°C for 5 h before the extraction.

# 3. $N_2$ adsorption-desorption isotherms

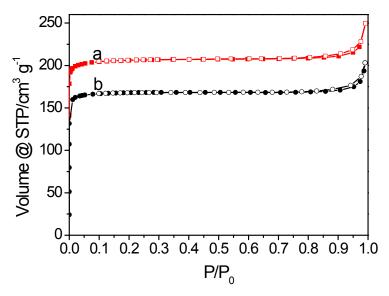



Fig. S1  $N_2$  adsorption-desorption isotherms of (a) NaY and (b) Ag-NaY

# **4.** ICP data for Ag-Y

Table S1 Influence of concentration of AgNO<sub>3</sub> to exchange capacity

| Entry | Zeolite | $C_{Ag^+}$ (mol L <sup>-1</sup> ) | Ion concentration (g L <sup>-1</sup> ) |                 |                    |                  | Exchange |
|-------|---------|-----------------------------------|----------------------------------------|-----------------|--------------------|------------------|----------|
|       |         |                                   | $Ag^+$                                 | Na <sup>+</sup> | $\mathrm{Si}^{2+}$ | Al <sup>3+</sup> | capacity |
| 1     | NaY     | 0                                 |                                        | 82.9            | 319.9              | 104.8            |          |
| 2     | Ag-Y-2  | 0.02                              | 186.8                                  | 46.3            | 294.4              | 102.3            | 25       |
| 3     | Ag-Y-4  | 0.04                              | 285.3                                  | 23.3            | 282.4              | 97.9             | 39       |
| 4     | Ag-Y-6  | 0.06                              | 337.4                                  | 18.0            | 301.8              | 104.8            | 43       |
| 5     | Ag-Y-8  | 0.08                              | 344.6                                  | 8.3             | 265.5              | 98.7             | 48       |