Hydrogen Bond Effect on the Photophysical Properties of 2-Ureido-4[1*H*]-pyrimidinone Quadruple Hydrogen Bonded Systems

Jun-Sheng Chen,^{1, 3, 4} Feng-Jiao Zhao,^{1, 4} Yang Yang,¹ Tian-Shu Chu^{* 1, 2}

¹State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical

Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China

²Institute for Computational Sciences and Engineering, Laboratory of New Fiber Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, Qingdao, 266071, People's Republic of China

³Department of Chemical Physics, Lund University, 22100 Lund, Sweden

⁴University of the Chinese Academy of Sciences, Beijing, 100049, People's

Republic of China

^{*} Corresponding author, Emails: tschu@dicp.ac.cn; tschu008@163.com

compound	absorption bands λ_{max} / nm [$\epsilon \times 10^4$ / $cm^{\text{-1}} \cdot M^{\text{-1}}$]	λ_{ex} /nm	λ_{emis} /nm
AnUP-DCM	391 [4.59], 370 [4.74], 352 [2.91], 335 [1.34], 259 [62.06]	350	392, 415, 441, 470
AnUP-DMSO	393 [9.11], 372 [9.63], 354 [6.02], 337 [3.05], 287 [12.29], 261 [116.45]	350	395, 418, 443,469
NaUP-DCM	268 [13.88]	280	319, 326, 350, 334
NaUP-DMSO	288 [24.93]	280	319, 335, 350
UPNa-DCM	288 [1.35], 256 [4.08]	280	340, 353
UPNa-DMSO	285 [0.68]	280	358

 Table S1.
 Summary of steady-state absorption and fluorescence emission

 measurements.

Figure S1. The instrument response functions (IRFs)

Table S2: Calculated important bond lengths (in Å) and bond angles (in degree) for the fully optimized structure of AnUP-dimer (in DCM) and AnUP-DMSO complex (in DMSO) in ground state (S_0) and first excited state (S_1). The corresponding X-ray data¹ are listed in parentheses.

	AnUP(DCM) ^[a]	AnUP(DMSO) ^[a]	AnUP(DCM) ^[b]	AnUP(DMSO) ^[b]
N ₁ -H ₁	1.03 (0.86)	1.02	1.04	1.03
N ₂ -H ₂	1.04 (0.86)	1.04	1.04	1.04
N_1 '- H_1 '	1.03 (0.86)	-	1.04	-
N2'-H2'	1.04 (0.86)	-	1.04	-
N ₄ -H ₃	1.03 (0.86)	1.03	1.03	1.03
N4'-H3'	1.03 (0.86)	-	1.03	-
O_1' ···· H_1	1.71 (1.90)	1.99	1.71	1.99
N_3' ···· H_2	1.92 (2.12)	-	1.92	-
$N_3 \cdots H_2'$	1.92 (2.12)	-	1.92	-
$O_1 \cdots H_1'/H_2$	1.71 (1.90)	1.68	1.72	1.68
O ₂ …H ₃	1.72 (1.91)	1.83	1.72	1.83
O_2' ···· H_3'	1.72 (1.90)	-	1.72	-
O_1' ···· H_1 - N_1	173.19 (168.75)	141.08	173.25	141.06
N_3' ···· H_2 - N_2	179.70 (171.39)	-	179.79	-
N ₃ …H ₂ ′- N ₂ ′	179.71 (171.99)	-	179.62	-
$O_1 \cdots H_1'/H_2 - N_1'/N_2$	173.19 (161.56)	170.67	173.22	170.68
O ₂ …H ₃ -N ₄	136.60 (133.01)	132.68	136.63	132.77
O ₂ '…H ₃ '-N ₄ '	136.60 (133.68)	-	136.58	-
$C_1-N_1-C_2-N_2$	-179.77 (-176.79)	-179.71	-179.87	-179.69
O ₂ -C ₂ -N ₂ -C ₃	0.09 (-8.06)	-9.78	0.72	-9.93
H ₃ -N ₄ -C ₄ -C ₆	-179.38 (177.42)	179.71	-179.65	179.82
C5-C6-C7-C8	126.57 (130.37)	-57.78	125.96	-58.08
C5-C6-C8-C9	-161.30 (-158.78)	-97.56	-160.44	-97.00
C ₁ '-N ₁ '-C ₂ '-N ₂ '	179.77 (-178.33)	-	179.78	-
O ₂ '-C ₂ '-N ₂ '-C ₃ '	-0.09 (-0.85)	-	0.14	-
H ₃ '-N ₄ '-C ₄ '-C ₆ '	179.39 (-179.25)	-	179.57	-
C5'-C6'-C7'-C8'	-126.57 (-128.67)	-	-126.55	-
C5'-C6'-C8'-C9'	161.31 (161.46)	-	161.20	-

[a] The geometric parameters of the ground state (S_0) . [b] The geometric parameters of the first excited state (S_1)

Table S3: Calculated important bond lengths (in Å) and bond angles (in degree) for the fully optimized structure of NaUP-dimer (in DCM) and NaUP-DMSO complex (in DMSO) in ground state (S_0) and first excited state (S_1).

	NaUP(DCM) ^[a]	NaUP(DMSO) ^[a]	NaUP(DCM) ^[b]	NaUP(DMSO) ^{[b}
N ₁ -H ₁	1.04	1.03	1.04	1.03
N_2 - H_2	1.04	1.04	1.04	1.04
N_1 '- H_1 '	1.04	-	1.04	-
N_2 '- H_2 '	1.04	-	1.04	-
N ₄ -H ₃	1.03	1.03	1.03	1.03
N4'-H3'	1.03	-	1.03	-
O_1 '···· H_1	1.72	1.97	1.72	1.98
N ₃ '…H ₂	1.92	-	1.91	-
$N_3 \cdots H_2'$	1.92	-	1.92	-
$O_1 \cdots H_1'/H_2$	1.72	1.69	1.71	1.69
O ₂ …H ₃	1.72	1.83	1.73	1.83
O ₂ '…H ₃ '	1.72	-	1.72	-
O_1 '···· H_1 - N_1	173.12	141.38	173.05	141.47
N ₃ '…H ₂ -N ₂	179.26	-	179.76	-
N ₃ ····H ₂ '- N ₂ '	179.80	-	179.61	-
$O_1 \cdots H_1'/H_2 - N_1'/N_2$	173.20	171.27	173.15	171.29
O ₂ …H ₃ -N ₄	136.56	132.71	136.45	132.71
O ₂ '…H ₃ '-N ₄ '	136.61	-	136.64	-
$C_1-N_1-C_2-N_2$	179.70	-179.09	-179.19	-178.96
O ₂ -C ₂ -N ₂ -C ₃	0.34	-8.83	0.75	-8.55
H ₃ -N ₄ -C ₄ -C ₆	-179.52	-179.94	-179.15	179.95
$C_5-C_6-C_7-C_8$	-90.53	-83.61	-102.74	-86.10
$C_{5}-C_{6}-C_{8}-C_{9}$	100.54	-115.40	121.76	-118.59
$C_1'-N_1'-C_2'-N_2'$	-179.62	-	-179.70	-
O ₂ '-C ₂ '-N ₂ '-C ₃ '	0.50	-	1.16	-
H ₃ '-N ₄ '-C ₄ '-C ₆ '	179.59	-	-179.84	-
C5'-C6'-C7'-C8'	89.86	-	78.69	-
C ₅ '-C ₆ '-C ₈ '-C ₉ '	-99.24	-	-17.69	-

[a] The geometric parameters of the ground state $(S_{0}). \ [b]$ The geometric parameters

of the first excited state (S_1)

Table S4: Calculated important bond lengths (in Å) and bond angles (in degree) for the fully optimized structure of UPNa-dimer (in DCM) and UPNa-DMSO complex (in DMSO) in ground state (S_0) and first excited state (S_1).

	UPNa (DCM) ^[a]	UPNa (DMSO) ^[a]	UPNa (DCM) ^[b]	UPNa (DMSO) ^[b]
N ₁ -H ₁	1.04	1.04	1.05	1.05
N ₂ -H ₂	1.04	1.05	1.04	1.05
N_1 '- H_1 '	1.04	-	1.04	-
N2'-H2'	1.04	-	1.04	-
N ₄ -H ₃	1.03	1.03	1.03	1.02
N4'-H3'	1.03	-	1.03	-
O_1 '···· H_1	1.70	1.75	1.66	1.68
N_3 '···· H_2	1.92	-	1.89	-
N3…H2′	1.92	-	1.90	-
O1…H1′/H ₂	1.70	1.71	1.70	1.68
$O_2 \cdots H_3$	1.74	1.84	1.76	1.86
O ₂ '…H ₃ '	1.74	-	1.75	-
$O1'$ ···· H_1 - N_1	171.54	164.38	171.21	167.71
N_3' ···· H_2 - N_2	177.59	-	178.26	-
N ₃ …H ₂ ′-N ₂ ′	177.59	-	177.60	-
$O_1 \cdots H_1'/H_2 - N_1'/N_2$	171.54	172.10	172.12	171.63
$O_2 \cdots H_3 - N_4$	135.05	131.90	134.10	131.05
O ₂ '····H ₃ '-N ₄ '	135.05	-	134.72	-
$N_2-C_1-N_1-C_2$	-178.32	-172.62	-173.29	-168.38
$N_2-C_1-C_2-C_3$	-178.03	40.19	-164.44	26.04
N ₂ '-C ₁ '-N ₁ '-C ₂ '	-178.32	-	-177.75	-
N ₂ '-C ₁ '-C ₂ '-C ₃ '	-178.04	-	-173.58	-

[a] The geometric parameters of the ground state (S_0) . [b] The geometric parameters

of the first excited state (S_1)

Figure S2. Optimized first excited state (S₁) structures for AnUP dimer (in DCM) and monomer complexes (in DMSO). Gray: C; red: O; blue: N; yellow: S; white: H.

Figure S3. Optimized first excited state (S₁) structures for NaUP dimer (in DCM) and monomer complexes (in DMSO). Gray: C; red: O; blue: N; yellow: S; white: H.

Figure S4. Optimized first excited state (S_1) structures for UPNa dimer (in DCM) and monomer complexes (in DMSO). Gray: C; red: O; blue: N; yellow: S; white: H.

Figure S6. ¹H NMR spectrum of AnUP in CDCl₃

Figure S7. ¹H NMR spectrum of NaUP in CDCl₃

Figure S8. ¹H NMR spectrum of UPNa in CDCl₃

¹H NMR spectra were recorded on a Bruker Avance II 400 MHz NMR spectrometers using CDCl₃ as solvent. Chemical shifts (δ) are reported to the shift-scale calibrated with the residual NMR solvent as internal standard.

Reference:

1. Zhao, Y.-p.; Zhao, C.-c.; Wu, L.-z.; Zhang, L.-p.; Tung, C.-h.; Pan, Y.-j., First Fluorescent Sensor for Fluoride Based on 2-Ureido-4 [1H] -pyrimidinone Quadruple Hydrogen-Bonded AADD Supramolecular Assembly. *J Org Chem* **2006**, *71*, 2143-2146.