Supplementary Information

CO2 reforming of CH4 over Ni/Mesostructured Silica Nanoparticles (MSN)

S. M. Sidik,^a A. A. Jalil,^{a,b*} S. Triwahyono,^c T. A. T. Abdullah,^{a,b} and A. Ripin,^{a,b}

 ^aDepartment of Chemical Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
^bInstitute of Hydrogen Economy, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.
^cDepartment of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

Corresponding author:

Aishah Abdul Jalil (PhD) Tel: +60-7-5535581 Fax: +60-7-5588166 Email: aishah@cheme.utm.my

Table S1Time required for electrolysis and the exact amount of Ni loading onto MSN and
MCM-41 as detected by MP-AES and EDX.

Catalysts	^a Time for electrolysis	^b Ni detected in catalyst	^c Ni on the surface
	[min]	[%]	[mass %]
Ni/MSN	3.49	1.99	1.91
Ni/MCM-41	3.49	1.98	1.61

^a Calculated time for electrolysis based on Faraday's Law (Eq. 1).

^b The detected Ni presence in the catalyst determined by MP-AES.

^c The detected Ni distributed on the surface of the catalysts obtained from elemental analysis using EDX.

Fig. S1 CH₄ and CO₂ conversions over Ni/MSN, Ni/MCM-41 and Ni/MCM-41 prepared by impregnation catalysts.

Fig. S2 TEM images of (A) Ni/MSN and (B) Ni/MCM-41 after regeneration 750 $^{\rm o}C$ with 30 min of air and 1 h of $\rm H_2$

Fig. S3 IR spectra of adsorbed CH_4 and CO_2 on activated Ni/MSN and Ni/MCM-41 when the catalyst were reduced and exposed to 30 Torr of CH_4 and CO_2 at room temperature followed by heating at elevated temperature from room temperature to 300 °C.

Probable mechanism of CO₂ reforming of CH₄ over the Ni/MSN and Ni/MCM-41 was studied using in-situ FTIR spectroscopy of adsorbed CH₄ and CO₂ which were recorded after reduction at 400 °C (Fig. S3). When Ni/MSN and Ni/MCM-41 were exposed to 30 Torr of CH₄ and CO₂, intense bands attributable to gaseous CH₄ and CO₂ appeared at 2989 and 2314 cm⁻¹, respectively. In addition, a band at 1616 cm⁻¹ corresponding to adsorbed bicarbonate, was also observed, suggesting the interaction of CO₂ with framework oxygen in the catalysts. Zhang et al. has evidenced that the IR bands of gas-phase CO (at 2170 and 2122 cm⁻¹), which resulted from CO_2 reforming of CH₄ catalyzed by Ni/ γ -Al₂O₃ started to appear when the reaction temperature exceeded 400 °C.¹ In another study, Qian et al. observed the presence of CO at the higher temperature of 500 °C over Ni/SBA-15 and La-Ni/SBA-15.² In this study, neither gas-phase nor adsorbed CO bands were detected, because of the limitation of the instrument to perform at higher reaction temperatures (> 300 °C). However, the presence of adsorbed bicarbonate, after exposure to CH₄ and CO₂ at room temperature, suggested the occurrence of strong CO₂ adsorption. Qian et al. only reported the presence of adsorbed bicarbonate for La-Ni/SBA-15, whereas no bicarbonate detection was reported for Ni/SBA-15.² The increasing of temperatures up to 300 °C, the intensities of the above mentioned adsorbed species decreased. However, it is worth mentioning that the signal intensity for adsorbed bicarbonate with the Ni/MSN was relatively higher than that for Ni/MCM-41 at 300 °C, indicating the ability of Ni/MSN to adsorb CO₂ at higher temperatures (as evidenced by the rate of CO₂ conversion for Ni/MSN exceeding Ni/MCM-41; refer Fig. 8). It was, therefore, concluded that the nickel supported on MSN was more active than the MCM-41 in the present study.

¹ Z. Zhang, X.E. Verykios, S.M. MacDonald, and S. Affrossman, J. Phys. Chem., 1996, 100, 744.

² L. Qian, Z. Ma, Y. Ren, H. Shi, B. Yue, S. Feng, J. Shen, and S. Xie, Fuel, 2014, 22, 47.