Electrochemical Proton Reduction Catalysed by Selenolato-Manganese

Carbonyl Complexes

Kaipeng Hou,^a Sherman J. L. Lauw,^b Richard D. Webster^b and Wai Yip Fan *^a

^aDepartment of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543.

^bDivision of Chemistry & Biological Chemistry, Nanyang Technological University SPMS-04-01, 21 Nanyang Avenue, SPMS-CBC-06-07, Singapore 637371

Infrared spectrum resulting from the reaction of 1 with Na in thf

vCO peaks of Complex 1 in THF after Na is added.

General Single crystal X-ray structural study details. Crystals were grown from solvents in dichloromethane/hexane . The X-ray data were collected with a Bruker AXS D8 Venture Kappa four cycles X-ray diffractometer system equipped with a Photon 100 detector, using a Mo sealed microfocusing Source, with the Bruker Apex 2 suite program¹.

Data were integrated with the Bruker SAINT program² using a narrow-frame algorithm. Sadabs (Sheldrick G.M. 2012)³ was used for absorption correction. Structural solution and refinement were carried out with the SHELXTL⁴ suite of programs. The structures were solved by direct methods, followed by difference maps and refined with full-matrix least-squares on F2. All non-hydrogen atoms were generally given anisotropic displacement parameters in the final model. All hydrogen atoms were put at calculated positions. The thermal ellipsoid plots were created using the XP component of SHELXTL.

For complex 2, two terminal C atoms of one of the n-butyl groups were disordered into two positions with occupancy ratio=84:16. Restraints in bond lengths and thermal parameters were applied to the disordered atoms. The minor parts were kept isotropic. The high residue peaks could be due to the crystal was a thin plate.

For complex 4, a twin refinement was performed and found the twin component refinement has a BASF value of 0.01265.

Reference:

- 1. Apex2 v2013,9.0, Bruker AXS Inc.
- 2. SAINT V8.32B, 2013, Bruker AXS Inc.
- 3. G.M. Sheldrick, Sadabs, v2012/1, Bruker AXS Inc.
- 4. G.M. Sheldrick, SHELXTL, Bruker AXS Inc

1. Crystal structure information of complex 2.

(1) Data collection and structure refinement for complex 2.

Theta range for data collection	2.08 to 27.50°
Index ranges	-14<=h<=14, -26<=k<=26, -26<=l<=26
Reflections collected	75699
Independent reflections	10274 [R(int) = 0.0857]
Max. and min. transmission	0.5633 and 0.4485
Structure solution technique	direct methods

Structure solution program	SHELXS-97 (Sheldrick 2008)		
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXL-2013 (Sheldrick, 2013)		
Function minimized	$\Sigma \mathrm{w}(\mathrm{F_o}^2 - \mathrm{F_c}^2)^2$		
Data / restraints / parameters	10274 / 6 / 484		
Goodness-of-fit on F ²	1.007		
Δ/σ_{max}	0.002		
Final R indices	7501 data; I>2 σ (I) R1 = 0.0387, wR2 = 0.0731		
	all data $R1 = 0.0706$, $wR2 = 0.0805$		
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0340P) ² +3.3988P] where P=(F_o^2 +2 F_c^2)/3		
Largest diff. peak and hole	l 1.228 and -0.446 eÅ ⁻³		
R.M.S. deviation from mean	1 0.098 eÅ ⁻³		

(2) Bond lengths (Å) for complex 2.

<u>(-) </u>	······································		
Mn1-C14	1.790(3)	Mn1-C15	1.795(3)
Mn1-C13	2.032(3)	Mn1-P1	2.3021(8)
Mn1-Se2	2.4601(5)	Mn1-Se1	2.4672(5)
Mn1-Mn2	2.6528(6)	Mn2-C16	1.786(3)
Mn2-C17	1.794(3)	Mn2-C13	2.017(3)
Mn2-P2	2.3014(9)	Mn2-Se1	2.4640(5)
Mn2-Se2	2.4647(5)	Se1-C1	1.932(3)
Se2-C7	1.935(3)	P1-C22	1.833(3)
P1-C26	1.835(3)	P1-C18	1.836(3)
P2-C30	1.836(3)	P2-C38	1.840(3)
P2-C34	1.841(3)	O1-C13	1.170(3)
O2-C14	1.152(3)	O3-C15	1.156(3)
O4-C16	1.161(3)	O5-C17	1.157(3)
C1-C6	1.384(4)	C1-C2	1.392(4)
C2-C3	1.385(4)	C2-H2	0.95

C3-C4	1.382(4)	С3-Н3	0.95
C4-C5	1.389(4)	C4-H4	0.95
C5-C6	1.386(4)	С5-Н5	0.95
С6-Н6	0.95	C7-C12	1.381(4)
C7-C8	1.397(4)	C8-C9	1.383(4)
С8-Н8	0.95	C9-C10	1.374(5)
С9-Н9	0.95	C10-C11	1.380(4)
С10-Н10	0.95	C11-C12	1.400(4)
C11-H11	0.95	С12-Н12	0.95
C18-C19	1.532(4)	C18-H18A	0.99
C18-H18B	0.99	C19-C20	1.524(4)
C19-H19A	0.99	C19-H19B	0.99
C20-C21	1.521(4)	C20-H20A	0.99
С20-Н20В	0.99	C21-H21A	0.98
C21-H21B	0.98	C21-H21C	0.98
C22-C23	1.534(4)	C22-H22A	0.99
С22-Н22В	0.99	C23-C24	1.534(4)
С23-Н23А	0.99	С23-Н23В	0.99
C24-C25	1.507(5)	C24-H24A	0.99
C24-H24B	0.99	C25-H25A	0.98
С25-Н25В	0.98	C25-H25C	0.98
C26-C27	1.537(4)	C26-H26A	0.99
С26-Н26В	0.99	C27-C28	1.519(4)
С27-Н27А	0.99	С27-Н27В	0.99
C28-C29	1.520(4)	C28-H28A	0.99
C28-H28B	0.99	С29-Н29А	0.98
С29-Н29В	0.98	С29-Н29С	0.98
C30-C31	1.530(4)	C30-H30A	0.99
С30-Н30В	0.99	C31-C32	1.528(4)
C31-H31A	0.99	C31-H31B	0.99
C32-C33	1.516(4)	С32-Н32А	0.99
С32-Н32В	0.99	С33-Н33А	0.98
С33-Н33В	0.98	С33-Н33С	0.98
C34-C35	1.538(4)	C34-H34A	0.99
C34-H34B	0.99	C35-C36	1.528(4)
С35-Н35А	0.99	С35-Н35В	0.99
C36-C37	1.520(4)	С36-Н36А	0.99
С36-Н36В	0.99	С37-Н37А	0.98
С37-Н37В	0.98	С37-Н37С	0.98
C38-C39	1.543(4)	C38-H38A	0.99

C38-H38B	0.99	C39-C40A	1.515(15)
C39-C40	1.538(5)	C40-C41	1.510(6)
C40-H40A	0.99	C40-H40B	0.99
C41-H41A	0.98	C41-H41B	0.98
C41-H41C	0.98	C40A-C41A	1.509(16)
C40A-H40C	0.99	C40A-H40D	0.99
C41A-H41D	0.98	C41A-H41E	0.98
C41A-H41F	0.98		

(3)Bond angles (°) for complex 2.

	/ I		
C14-Mn1-C15	90.53(13)	C14-Mn1-C13	84.71(11)
C15-Mn1-C13	82.14(12)	C14-Mn1-P1	86.21(9)
C15-Mn1-P1	88.18(9)	C13-Mn1-P1	166.64(9)
C14-Mn1-Se2	171.69(9)	C15-Mn1-Se2	97.67(9)
C13-Mn1-Se2	95.08(8)	P1-Mn1-Se2	95.32(2)
C14-Mn1-Se1	96.80(9)	C15-Mn1-Se1	171.73(10)
C13-Mn1-Se1	94.68(8)	P1-Mn1-Se1	96.11(2)
Se2-Mn1-Se1	74.931(15)	C14-Mn1-Mn2	117.54(9)
C15-Mn1-Mn2	115.62(9)	C13-Mn1-Mn2	48.84(8)
P1-Mn1-Mn2	144.52(3)	Se2-Mn1-Mn2	57.492(14)
Se1-Mn1-Mn2	57.397(14)	C16-Mn2-C17	91.12(12)
C16-Mn2-C13	84.80(12)	C17-Mn2-C13	81.10(12)
C16-Mn2-P2	87.84(9)	C17-Mn2-P2	87.47(9)
C13-Mn2-P2	166.25(8)	C16-Mn2-Se1	169.83(9)
C17-Mn2-Se1	98.93(9)	C13-Mn2-Se1	95.14(8)
P2-Mn2-Se1	94.14(2)	C16-Mn2-Se2	94.96(9)
C17-Mn2-Se2	172.64(9)	C13-Mn2-Se2	95.31(8)
P2-Mn2-Se2	96.88(2)	Se1-Mn2-Se2	74.906(15)
C16-Mn2-Mn1	116.41(9)	C17-Mn2-Mn1	116.08(9)
C13-Mn2-Mn1	49.30(8)	P2-Mn2-Mn1	144.19(3)
Se1-Mn2-Mn1	57.513(14)	Se2-Mn2-Mn1	57.324(14)
C1-Se1-Mn2	112.42(8)	C1-Se1-Mn1	113.29(8)
Mn2-Se1-Mn1	65.090(15)	C7-Se2-Mn1	112.86(9)
C7-Se2-Mn2	113.67(8)	Mn1-Se2-Mn2	65.185(15)
C22-P1-C26	102.74(14)	C22-P1-C18	103.06(14)
C26-P1-C18	103.38(13)	C22-P1-Mn1	112.61(10)
C26-P1-Mn1	117.02(10)	C18-P1-Mn1	116.22(10)
C30-P2-C38	101.31(13)	C30-P2-C34	103.01(13)
C38-P2-C34	103.24(14)	C30-P2-Mn2	116.61(10)

C38-P2-Mn2	117.42(10)	C34-P2-Mn2	113.25(10)
C6-C1-C2	119.6(3)	C6-C1-Se1	124.5(2)
C2-C1-Se1	115.9(2)	C3-C2-C1	120.2(3)
С3-С2-Н2	119.9	С1-С2-Н2	119.9
C4-C3-C2	120.1(3)	С4-С3-Н3	120.0
С2-С3-Н3	120.0	C3-C4-C5	119.8(3)
С3-С4-Н4	120.1	С5-С4-Н4	120.1
C6-C5-C4	120.2(3)	С6-С5-Н5	119.9
С4-С5-Н5	119.9	C1-C6-C5	120.0(3)
С1-С6-Н6	120.0	С5-С6-Н6	120.0
C12-C7-C8	119.4(3)	C12-C7-Se2	125.7(2)
C8-C7-Se2	114.9(2)	C9-C8-C7	120.6(3)
С9-С8-Н8	119.7	С7-С8-Н8	119.7
C10-C9-C8	120.1(3)	С10-С9-Н9	119.9
С8-С9-Н9	119.9	C9-C10-C11	119.9(3)
С9-С10-Н10	120.1	С11-С10-Н10	120.1
C10-C11-C12	120.6(3)	C10-C11-H11	119.7
С12-С11-Н11	119.7	C7-C12-C11	119.5(3)
С7-С12-Н12	120.3	С11-С12-Н12	120.3
O1-C13-Mn2	139.3(2)	O1-C13-Mn1	138.8(2)
Mn2-C13-Mn1	81.86(11)	O2-C14-Mn1	175.7(2)
O3-C15-Mn1	175.3(3)	O4-C16-Mn2	177.1(2)
O5-C17-Mn2	175.1(2)	C19-C18-P1	112.75(19)
C19-C18-H18A	109.0	P1-C18-H18A	109.0
C19-C18-H18B	109.0	P1-C18-H18B	109.0
H18A-C18-H18B	107.8	C20-C19-C18	114.3(2)
С20-С19-Н19А	108.7	C18-C19-H19A	108.7
С20-С19-Н19В	108.7	C18-C19-H19B	108.7
H19A-C19-H19B	107.6	C21-C20-C19	111.0(2)
C21-C20-H20A	109.4	С19-С20-Н20А	109.4
С21-С20-Н20В	109.4	С19-С20-Н20В	109.4
H20A-C20-H20B	108.0	C20-C21-H21A	109.5
С20-С21-Н21В	109.5	H21A-C21-H21B	109.5
С20-С21-Н21С	109.5	H21A-C21-H21C	109.5
H21B-C21-H21C	109.5	C23-C22-P1	117.3(2)
C23-C22-H22A	108.0	P1-C22-H22A	108.0
С23-С22-Н22В	108.0	P1-C22-H22B	108.0
H22A-C22-H22B	107.2	C24-C23-C22	112.5(3)
С24-С23-Н23А	109.1	С22-С23-Н23А	109.1
С24-С23-Н23В	109.1	С22-С23-Н23В	109.1

H23A-C23-H23B	107.8	C25-C24-C23	113.5(3)
C25-C24-H24A	108.9	C23-C24-H24A	108.9
С25-С24-Н24В	108.9	С23-С24-Н24В	108.9
H24A-C24-H24B	107.7	C24-C25-H25A	109.5
С24-С25-Н25В	109.5	H25A-C25-H25B	109.5
С24-С25-Н25С	109.5	H25A-C25-H25C	109.5
H25B-C25-H25C	109.5	C27-C26-P1	113.7(2)
C27-C26-H26A	108.8	P1-C26-H26A	108.8
С27-С26-Н26В	108.8	P1-C26-H26B	108.8
H26A-C26-H26B	107.7	C28-C27-C26	113.1(3)
С28-С27-Н27А	109.0	С26-С27-Н27А	109.0
С28-С27-Н27В	109.0	С26-С27-Н27В	109.0
H27A-C27-H27B	107.8	C27-C28-C29	112.6(3)
C27-C28-H28A	109.1	C29-C28-H28A	109.1
С27-С28-Н28В	109.1	C29-C28-H28B	109.1
H28A-C28-H28B	107.8	С28-С29-Н29А	109.5
С28-С29-Н29В	109.5	H29A-C29-H29B	109.5
С28-С29-Н29С	109.5	H29A-C29-H29C	109.5
H29B-C29-H29C	109.5	С31-С30-Р2	114.6(2)
С31-С30-Н30А	108.6	Р2-С30-Н30А	108.6
С31-С30-Н30В	108.6	Р2-С30-Н30В	108.6
H30A-C30-H30B	107.6	C32-C31-C30	111.9(2)
С32-С31-Н31А	109.2	C30-C31-H31A	109.2
С32-С31-Н31В	109.2	C30-C31-H31B	109.2
H31A-C31-H31B	107.9	C33-C32-C31	112.2(3)
С33-С32-Н32А	109.2	C31-C32-H32A	109.2
С33-С32-Н32В	109.2	С31-С32-Н32В	109.2
H32A-C32-H32B	107.9	С32-С33-Н33А	109.5
С32-С33-Н33В	109.5	H33A-C33-H33B	109.5
С32-С33-Н33С	109.5	H33A-C33-H33C	109.5
H33B-C33-H33C	109.5	C35-C34-P2	116.2(2)
С35-С34-Н34А	108.2	P2-C34-H34A	108.2
С35-С34-Н34В	108.2	P2-C34-H34B	108.2
H34A-C34-H34B	107.4	C36-C35-C34	111.9(2)
С36-С35-Н35А	109.2	С34-С35-Н35А	109.2
С36-С35-Н35В	109.2	С34-С35-Н35В	109.2
H35A-C35-H35B	107.9	C37-C36-C35	111.8(3)
С37-С36-Н36А	109.3	С35-С36-Н36А	109.3
С37-С36-Н36В	109.3	С35-С36-Н36В	109.3
H36A-C36-H36B	107.9	С36-С37-Н37А	109.5

С36-С37-Н37В	109.5	Н37А-С37-Н37В	109.5
С36-С37-Н37С	109.5	Н37А-С37-Н37С	109.5
Н37В-С37-Н37С	109.5	C39-C38-P2	114.6(2)
С39-С38-Н38А	108.6	P2-C38-H38A	108.6
С39-С38-Н38В	108.6	Р2-С38-Н38В	108.6
H38A-C38-H38B	107.6	C40A-C39-C38	112.2(11)
C40-C39-C38	112.3(3)	C41-C40-C39	114.1(3)
C41-C40-H40A	108.7	С39-С40-Н40А	108.7
C41-C40-H40B	108.7	С39-С40-Н40В	108.7
H40A-C40-H40B	107.6	C40-C41-H41A	109.5
C40-C41-H41B	109.5	H41A-C41-H41B	109.5
С40-С41-Н41С	109.5	H41A-C41-H41C	109.5
H41B-C41-H41C	109.5	C41A-C40A-C39	111.1(19)
C41A-C40A-H40C	109.4	С39-С40А-Н40С	109.4
C41A-C40A-H40D	109.4	C39-C40A-H40D	109.4
H40C-C40A-H40D	108.0	C40A-C41A-H41D	109.5
C40A-C41A-H41E	109.5	H41D-C41A-H41E	109.5
C40A-C41A-H41F	109.5	H41D-C41A-H41F	109.5
H41E-C41A-H41F	109.5		

2. Crystal structure information of complex 3.

|--|

Theta range for data collection	2.37 to 27.50°	
Index ranges	-21<=h<=21, -16<=k<=15, -14<=l<=14	
Reflections collected	16556	
Independent reflections	2955 [R(int) = 0.0526]	
Max. and min. transmission	0.7700 and 0.6900	
Structure solution technique	direct methods	
Structure solution program	SHELXS-97 (Sheldrick 2008)	
Refinement method	Full-matrix least-squares on F ²	
Refinement program	SHELXL-2013 (Sheldrick, 2013)	
Function minimized	$\Sigma w(F_0^2 - F_c^2)^2$	
Data / restraints / parameters	2955 / 0 / 178	
Goodness-of-fit on F ²	1.057	

Δ/σ_{max}	0.001		
Final R indices	2346 data; $I > 2\sigma(I)$	R1 = 0.0288, wR2 = 0.0510	
	all data	R1 = 0.0474, wR2 = 0.0560	
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0231P) ² +0.7096P] where P=(F_o^2 +2 F_c^2)/3		
Largest diff. peak and hole	0.569 and -0.438 e.	Å-3	
R.M.S. deviation from mean	0.106 eÅ ⁻³		

(2)Bond lengths (Å) for complex 3.

(-)	~ ()P	•		
Se1-C1	1.936(2)	Se1-Mn2	2.5104(4)	
Se1-Mn1	2.5301(4)	Mn1-C7	1.793(3)	
Mn1-C7	1.794(3)	Mn1-C8	1.804(4)	
Mn1-N1	2.103(3)	Mn1-Se1	2.5301(4)	
Mn2-C10	1.804(3)	Mn2-C10	1.804(3)	
Mn2-C9	1.865(4)	Mn2-C11	1.864(4)	
Mn2-Se1	2.5104(4)	O1-C7	1.158(3)	
O2-C8	1.146(4)	O3-C9	1.140(4)	
O4-C10	1.150(3)	O5-C11	1.137(4)	
N1-C12	1.346(3)	N1-C12	1.346(3)	
C1-C2	1.386(3)	C1-C6	1.388(3)	
C2-C3	1.383(3)	C3-C4	1.377(4)	
C4-C5	1.384(4)	C5-C6	1.389(4)	
C12-C13	1.378(4)	C13-C14	1.383(3)	
C14-C13	1.383(3)			
1		· · ·		

(3) Bond angles (°) for complex 3.

	1		
C1-Se1-Mn2	109.97(7)	C1-Se1-Mn1	108.44(7)
Mn2-Se1-Mn1	95.730(13)	C7-Mn1-C7	86.71(15)
C7-Mn1-C8	90.76(11)	C7-Mn1-C8	90.76(11)
C7-Mn1-N1	91.82(10)	C7-Mn1-N1	91.83(10)
C8-Mn1-N1	176.44(14)	C7-Mn1-Se1	94.97(7)
C7-Mn1-Se1	178.16(8)	C8-Mn1-Se1	89.96(8)
N1-Mn1-Se1	87.38(6)	C7-Mn1-Se1	178.16(8)
C7-Mn1-Se1	94.97(7)	C8-Mn1-Se1	89.96(8)
N1-Mn1-Se1	87.38(6)	Sel-Mnl-Sel	83.329(18)
C10-Mn2-C10	87.81(15)	C10-Mn2-C9	92.75(11)
C10-Mn2-C9	92.75(11)	C10-Mn2-C11	94.86(11)
C10-Mn2-C11	94.86(11)	C9-Mn2-C11	169.43(15)

176.03(8)	C10-Mn2-Se1	93.92(7)
83.61(8)	C11-Mn2-Se1	88.55(8)
93.92(7)	C10-Mn2-Se1	176.03(8)
83.61(8)	C11-Mn2-Se1	88.55(8)
84.132(19)	C12-N1-C12	116.7(3)
121.38(15)	C12-N1-Mn1	121.38(15)
119.2(2)	C2-C1-Se1	122.07(18)
118.70(19)	C3-C2-C1	120.3(2)
120.7(3)	C3-C4-C5	119.3(3)
120.4(3)	C1-C6-C5	120.1(3)
175.5(2)	O2-C8-Mn1	179.4(3)
176.2(3)	O4-C10-Mn2	176.2(2)
178.8(3)	N1-C12-C13	123.2(2)
119.6(3)	C13-C14-C13	117.7(4)
	176.03(8) 83.61(8) 93.92(7) 83.61(8) 84.132(19) 121.38(15) 119.2(2) 118.70(19) 120.7(3) 120.4(3) 175.5(2) 178.8(3) 119.6(3)	176.03(8)C10-Mn2-Se183.61(8)C11-Mn2-Se193.92(7)C10-Mn2-Se183.61(8)C11-Mn2-Se184.132(19)C12-N1-C12121.38(15)C12-N1-Mn1119.2(2)C2-C1-Se1118.70(19)C3-C2-C1120.7(3)C3-C4-C5120.4(3)C1-C6-C5175.5(2)O2-C8-Mn1176.2(3)O4-C10-Mn2178.8(3)N1-C12-C13119.6(3)C13-C14-C13

3. Crystal structure information of complex **4**.

()			
Theta range for data collection	1.74 to 27.50°		
Index ranges	-22<=h<=22, -10-	<=k<=21, -15<=l<=15	
Reflections collected	10940		
Independent reflections	6913 [R(int) = 0.0	0305]	
Max. and min. transmission	0.7457 and 0.6002	2	
Structure solution technique	direct methods		
Structure solution program	SHELXS-97 (She	eldrick 2008)	
Refinement method	Full-matrix least-squares on F ²		
Refinement program	SHELXL-2013 (Sheldrick, 2013)		
Function minimized	$\Sigma w(F_o^2 - F_c^2)^2$		
Data / restraints / parameters	6913 / 2 / 388		
Goodness-of-fit on F ²	0.914		
Δ/σ_{max}	0.001		
Final R indices	6160 data; I> $2\sigma(I)$ R1 = 0.0397, wR2 = 0.0775		
	all data $R1 = 0.0460, wR2 = 0.0803$		
Weighting scheme	w=1/[$\sigma^{2}(F_{o}^{2})$] where P=($F_{o}^{2}+2F_{c}^{2}$)/3		
Absolute structure parameter	0.0(0)		
Largest diff. peak and hole	0.706 and -0.291 eÅ ⁻³		

(1)Data collection and structure refinement for complex 4.

R.M.S. deviation	from mean 0.061	eÅ-3	
(2). Bond lengths	s (Å) for complex -	4.	
Mn1-C10	1.798(6)	Mn1-C12	1.807(5)
Mn1-C11	1.812(5)	Mn1-P2	2.3446(14)
Mn1-P1	2.3536(14)	Mn1-Se1	2.5417(8)
Se1-C1	1.933(5)	P1-C7	1.828(5)
P1-C1B	1.841(5)	P1-C1A	1.843(5)
P2-C1D	1.826(5)	P2-C9	1.833(5)
P2-C1C	1.846(5)	O1-C10	1.137(6)
O2-C11	1.137(6)	O3-C12	1.138(6)
C1-C6	1.374(8)	C1-C2	1.378(8)
C2-C3	1.374(8)	C3-C4	1.367(11)
C4-C5	1.366(11)	C5-C6	1.382(9)
C7-C8	1.516(8)	C8-C9	1.533(8)
C1A-C2A	1.375(8)	C1A-C6A	1.384(7)
C2A-C3A	1.388(8)	C3A-C4A	1.361(9)
C4A-C5A	1.371(9)	C5A-C6A	1.381(8)
C1B-C6B	1.379(7)	C1B-C2B	1.392(7)
C2B-C3B	1.375(8)	C3B-C4B	1.370(9)
C4B-C5B	1.372(9)	C5B-C6B	1.382(7)
C1C-C2C	1.381(8)	C1C-C6C	1.387(8)
C2C-C3C	1.369(7)	C3C-C4C	1.381(10)
C4C-C5C	1.349(10)	C5C-C6C	1.376(8)
C1D-C6D	1.387(7)	C1D-C2D	1.389(7)
C2D-C3D	1.374(8)	C3D-C4D	1.373(9)
C4D-C5D	1.382(9)	C5D-C6D	1.384(8)
(3). Bond angles	(°) for complex 4.		
C10-Mn1-C12	90.4(2)	C10-Mn1-C11	90.3(2)
C12-Mn1-C11	88.8(2)	C10-Mn1-P2	92.72(16)
C12-Mn1-P2	92.01(15)	C11-Mn1-P2	176.84(15)
C10-Mn1-P1	99.79(16)	C12-Mn1-P1	169.41(17)
C11-Mn1-P1	88.24(15)	P2-Mn1-P1	90.37(5)
C10-Mn1-Se1	172.31(16)	C12-Mn1-Se1	82.46(16)
C11-Mn1-Se1	92.40(14)	P2-Mn1-Se1	84.70(4)
P1-Mn1-Se1	87.49(4)	C1-Se1-Mn1	105.25(15)
C7-P1-C1B	103.9(2)	C7-P1-C1A	103.1(2)
C1B-P1-C1A	101.5(2)	C7-P1-Mn1	113.50(18)
C1B-P1-Mn1	119.21(17)	C1A-P1-Mn1	113.69(15)
C1D-P2-C9	104.1(2)	C1D-P2-C1C	99.9(2)
C9-P2-C1C	101.9(2)	C1D-P2-Mn1	115.23(16)
C9-P2-Mn1	115.47(17)	C1C-P2-Mn1	118.02(17)

118.7(6)	C6-C1-Se1 119.3(5)	
122.0(4)	C3-C2-C1 120.9(7)	
119.7(8)	C5-C4-C3 120.3(7)	
119.9(7)	C1-C6-C5 120.5(7)	
115.2(3)	C7-C8-C9 115.0(4)	
114.4(3)	O1-C10-Mn1 173.4(5)	
176.8(4)	O3-C12-Mn1 176.1(4)	
118.5(5)	C2A-C1A-P1 121.2(4)	
120.1(4)	C1A-C2A-C3A 120.5(5)	
120.8(6)	C3A-C4A-C5A 119.1(6)	
120.8(6)	C5A-C6A-C1A 120.3(6)	
118.7(5)	C6B-C1B-P1 119.1(4)	
122.2(4)	C3B-C2B-C1B 120.0(5)	
120.8(6)	C3B-C4B-C5B 119.7(5)	
119.9(6)	C1B-C6B-C5B 120.8(5)	
117.8(5)	C2C-C1C-P2 120.5(4)	
121.6(4)	C3C-C2C-C1C 121.2(6)	
119.7(7)	C5C-C4C-C3C 119.9(5)	
120.7(6)	C5C-C6C-C1C 120.6(6)	
118.9(5)	C6D-C1D-P2 117.8(4)	
123.2(4)	C3D-C2D-C1D 120.3(6)	
120.4(6)	C3D-C4D-C5D 120.3(6)	
119.4(6)	C5D-C6D-C1D 120.7(5)	
	$\begin{array}{c} 118.7(6) \\ 122.0(4) \\ 119.7(8) \\ 119.7(8) \\ 119.9(7) \\ 115.2(3) \\ 114.4(3) \\ 176.8(4) \\ 118.5(5) \\ 120.1(4) \\ 120.8(6) \\ 120.8(6) \\ 120.8(6) \\ 118.7(5) \\ 122.2(4) \\ 120.8(6) \\ 119.9(6) \\ 117.8(5) \\ 121.6(4) \\ 119.7(7) \\ 120.7(6) \\ 118.9(5) \\ 123.2(4) \\ 120.4(6) \\ 119.4(6) \\ \end{array}$	118.7(6)C6-C1-Se1 $119.3(5)$ $122.0(4)$ C3-C2-C1 $120.9(7)$ $119.7(8)$ C5-C4-C3 $120.3(7)$ $119.7(8)$ C1-C6-C5 $120.5(7)$ $115.2(3)$ C7-C8-C9 $115.0(4)$ $114.4(3)$ O1-C10-Mn1 $173.4(5)$ $176.8(4)$ O3-C12-Mn1 $176.1(4)$ $118.5(5)$ C2A-C1A-P1 $121.2(4)$ $120.1(4)$ C1A-C2A-C3A $120.5(5)$ $120.8(6)$ C3A-C4A-C5A $119.1(6)$ $122.2(4)$ C3B-C2B-C1B $120.0(5)$ $120.8(6)$ C3B-C4B-C5B $119.7(5)$ $119.9(6)$ C1B-C6B-C5B $120.8(5)$ $117.8(5)$ C2C-C1C-P2 $120.5(4)$ $121.6(4)$ C3C-C2C-C1C $121.2(6)$ $119.7(7)$ C5C-C4C-C3C $119.9(5)$ $120.7(6)$ C5C-C6C-C1C $120.6(6)$ $118.9(5)$ C6D-C1D-P2 $117.8(4)$ $123.2(4)$ C3D-C2D-C1D $120.3(6)$ $120.4(6)$ C3D-C4D-C5D $120.3(6)$ $119.4(6)$ C5D-C6D-C1D $120.7(5)$

4. Crystal structure information of complex 5.

(1). Data collection and structure refinement for complex 5.

Theta range for data collection	1.75 to 27.50°
Index ranges	-11<=h<=12, -15<=k<=14, -17<=l<=17
Reflections collected	10408
Independent reflections	6675 [R(int) = 0.0315]
Max. and min. transmission	0.7456 and 0.6071
Structure solution technique	direct methods
Structure solution program	Bruker SHELXTL
Refinement method	Full-matrix least-squares on F ²
Refinement program	SHELXL-2013 (Sheldrick, 2013)
Function minimized	$\Sigma w(F_0^2 - F_c^2)^2$

Data / restraints / parameters	6675 / 0 / 388		
Goodness-of-fit on F ²	1.033		
Final R indices	5615 data; $I > 2\sigma(I)$	R1 = 0.0483, wR2 = 0.1149	
	all data	R1 = 0.0579, wR2 = 0.1206	
Weighting scheme	w=1/[$\sigma^2(F_o^2)$ +(0.0629P) ² +0.2204P] where P=(F_o^2 +2 F_c^2)/3		
Largest diff. peak and hole	0.716 and -0.325 e.	Å-3	
R.M.S. deviation from mean	0.086 eÅ ⁻³		

(2). Bond lengths (Å) for complex 5.

(I): Dona lengens			
Mn1-C4	1.782(3)	Mn1-C3	1.834(3)
Mn1-C5	1.835(3)	Mn1-O5	2.055(2)
Mn1-P1	2.3449(12)	Mn1-P2	2.3661(13)
P1-C1B	1.827(3)	P1-C1A	1.833(2)
P1-C6	1.837(2)	P2-C1C	1.818(2)
P2-C8	1.832(2)	P2-C1D	1.839(3)
F1-C2	1.346(3)	F2-C2	1.321(3)
F3-C2	1.309(3)	O1-C4	1.157(3)
O2-C3	1.147(3)	O3-C5	1.138(3)
O4-C1	1.215(3)	O5-C1	1.269(3)
C1-C2	1.541(3)	C6-C7	1.531(3)
С6-Н6А	0.99	С6-Н6В	0.99
C7-C8	1.532(3)	C7-H7A	0.99
С7-Н7В	0.99	C8-H8A	0.99
C8-H8B	0.99	C1A-C2A	1.389(3)
C1A-C6A	1.391(3)	C2A-C3A	1.390(4)
C2A-H2A	0.95	C3A-C4A	1.389(4)
СЗА-НЗА	0.95	C4A-C5A	1.376(4)
C4A-H4A	0.95	C5A-C6A	1.387(4)
C5A-H5A	0.95	C6A-H6A1	0.95
C1B-C6B	1.391(3)	C1B-C2B	1.403(3)
C2B-C3B	1.395(4)	C2B-H2B	0.95
C3B-C4B	1.376(4)	СЗВ-НЗВ	0.95
C4B-C5B	1.388(4)	C4B-H4B	0.95
C5B-C6B	1.387(3)	C5B-H5B	0.95
C6B-H6B1	0.95	C1C-C2C	1.386(3)
C1C-C6C	1.398(3)	C2C-C3C	1.379(3)
C2C-H2C	0.95	C3C-C4C	1.392(4)

С3С-Н3С	0.95	C4C-C5C	1.383(4)
C4C-H4C	0.95	C5C-C6C	1.377(3)
C5C-H5C	0.95	С6С-Н6С	0.95
C1D-C6D	1.392(3)	C1D-C2D	1.397(3)
C2D-C3D	1.392(4)	C2D-H2D	0.95
C3D-C4D	1.373(4)	C3D-H3D	0.95
C4D-C5D	1.387(4)	C4D-H4D	0.95
C5D-C6D	1.393(3)	C5D-H5D	0.95
C6D-H6D	0.95		
(3). Bond angles	(°) for complex 5.	•	
C4-Mn1-C3	87.58(10)	C4-Mn1-C5	90.54(11)
C3-Mn1-C5	90.52(11)	C4-Mn1-O5	176.75(9)
C3-Mn1-O5	92.59(9)	C5-Mn1-O5	92.70(9)
C4-Mn1-P1	94.53(9)	C3-Mn1-P1	91.30(8)
C5-Mn1-P1	174.68(7)	O5-Mn1-P1	82.22(6)
C4-Mn1-P2	95.72(8)	C3-Mn1-P2	176.55(8)
C5-Mn1-P2	88.45(8)	O5-Mn1-P2	84.17(5)
P1-Mn1-P2	89.44(5)	C1B-P1-C1A	100.23(12)
C1B-P1-C6	103.70(11)	C1A-P1-C6	100.86(11)
C1B-P1-Mn1	114.23(9)	C1A-P1-Mn1	122.74(9)
C6-P1-Mn1	112.59(9)	C1C-P2-C8	105.58(12)
C1C-P2-C1D	102.43(11)	C8-P2-C1D	99.77(10)
C1C-P2-Mn1	116.32(8)	C8-P2-Mn1	115.10(8)
C1D-P2-Mn1	115.56(8)	C1-O5-Mn1	122.67(15)
O4-C1-O5	130.6(2)	O4-C1-C2	118.7(2)
O5-C1-C2	110.6(2)	F3-C2-F2	108.2(2)
F3-C2-F1	105.9(2)	F2-C2-F1	106.0(2)
F3-C2-C1	113.3(2)	F2-C2-C1	112.6(2)
F1-C2-C1	110.3(2)	O2-C3-Mn1	176.0(2)
O1-C4-Mn1	176.1(2)	O3-C5-Mn1	176.8(2)
C7-C6-P1	112.18(16)	С7-С6-Н6А	109.2
P1-C6-H6A	109.2	С7-С6-Н6В	109.2
Р1-С6-Н6В	109.2	H6A-C6-H6B	107.9
C6-C7-C8	113.81(19)	С6-С7-Н7А	108.8
С8-С7-Н7А	108.8	С6-С7-Н7В	108.8
С8-С7-Н7В	108.8	H7A-C7-H7B	107.7
C7-C8-P2	116.21(15)	C7-C8-H8A	108.2
P2-C8-H8A	108.2	С7-С8-Н8В	108.2
Р2-С8-Н8В	108.2	H8A-C8-H8B	107.4
C2A-C1A-C6A	118.9(2)	C2A-C1A-P1	122.07(19)

C6A-C1A-P1	118.95(19)	C1A-C2A-C3A	119.9(2)
C1A-C2A-H2A	120.1	C3A-C2A-H2A	120.1
C4A-C3A-C2A	120.5(3)	С4А-С3А-НЗА	119.8
С2А-С3А-Н3А	119.8	C5A-C4A-C3A	119.8(2)
С5А-С4А-Н4А	120.1	СЗА-С4А-Н4А	120.1
C4A-C5A-C6A	119.8(3)	C4A-C5A-H5A	120.1
C6A-C5A-H5A	120.1	C5A-C6A-C1A	121.0(3)
C5A-C6A-H6A1	119.5	C1A-C6A-H6A1	119.5
C6B-C1B-C2B	118.9(2)	C6B-C1B-P1	121.95(18)
C2B-C1B-P1	119.18(19)	C3B-C2B-C1B	120.1(3)
C3B-C2B-H2B	119.9	C1B-C2B-H2B	119.9
C4B-C3B-C2B	120.2(3)	C4B-C3B-H3B	119.9
C2B-C3B-H3B	119.9	C3B-C4B-C5B	120.0(3)
C3B-C4B-H4B	120.0	C5B-C4B-H4B	120.0
C6B-C5B-C4B	120.2(3)	C6B-C5B-H5B	119.9
C4B-C5B-H5B	119.9	C5B-C6B-C1B	120.5(2)
C5B-C6B-H6B1	119.7	C1B-C6B-H6B1	119.7
C2C-C1C-C6C	119.0(2)	C2C-C1C-P2	123.32(18)
C6C-C1C-P2	117.64(18)	C3C-C2C-C1C	120.3(2)
C3C-C2C-H2C	119.9	C1C-C2C-H2C	119.9
C2C-C3C-C4C	120.5(2)	С2С-С3С-Н3С	119.8
C4C-C3C-H3C	119.8	C5C-C4C-C3C	119.4(2)
C5C-C4C-H4C	120.3	C3C-C4C-H4C	120.3
C6C-C5C-C4C	120.2(2)	С6С-С5С-Н5С	119.9
C4C-C5C-H5C	119.9	C5C-C6C-C1C	120.6(2)
С5С-С6С-Н6С	119.7	С1С-С6С-Н6С	119.7
C6D-C1D-C2D	118.4(2)	C6D-C1D-P2	118.77(18)
C2D-C1D-P2	122.83(18)	C3D-C2D-C1D	120.1(2)
C3D-C2D-H2D	119.9	C1D-C2D-H2D	119.9
C4D-C3D-C2D	121.2(2)	C4D-C3D-H3D	119.4
C2D-C3D-H3D	119.4	C3D-C4D-C5D	119.3(2)
C3D-C4D-H4D	120.3	C5D-C4D-H4D	120.3
C4D-C5D-C6D	120.1(2)	C4D-C5D-H5D	119.9
C6D-C5D-H5D	119.9	C1D-C6D-C5D	120.9(2)
C1D-C6D-H6D	119.5	C5D-C6D-H6D	119.5