Supporting Information

Synthesis of hierarchical SiO₂/Au/CeO₂ rod-like nanostructure for high catalytic

activity and recyclability

Samples	BET surface area	Pore diameter	Pore volume
	(m ² /g)	(nm)	(cm^3/g)
SiO ₂ /Au	21	18.53	0.18
SiO ₂ /Au/CeO ₂	110	5.03	0.14

Table S1. Characteristics of BET of the SiO₂/Au and SiO₂/Au/CeO₂.

Fig. S1 EDX analysis of SiO₂/Au/CeO₂ and the inert are the EDX mapping analysis of the Au, Ce

and Si.

Figure S2. The solution without catalyst.

Figure S3. (a) TEM image of SiO₂/Au after calcination progress, (b) traditional noble metal supported CeO_2/Au catalyst.

Figure S4. TEM image of (1) SiO₂/Au/CeO₂ (0.05) (2) SiO₂/Au/CeO₂ (0.1) (3) SiO₂/Au/CeO₂ (0.15).

Fig. S4a indicted that when $Ce(NO_3)_3 \cdot 6H_2O$ feeding amount about 0.05g, there have many small nanoparticles attached on the surface of the spheres and the surface was covered but not entirely covered with CeO_2 nanoparticles. They are coexistence in the surface of SiO₂/Au side by side. With increasing the feeding amount, the TEM image in Fig. S4b and c shows that Au/SiO₂ rode was coated by a dense CeO_2 layer and metal nanocatalysts are covered by porous shells, the layer coated on CeO_2 spheres becomes thicker with increasing the amount of $Ce(NO_3)_3 \cdot 6H_2O$. However, too much CeO_2 nanoparticles will affect the diffusion of reactant in the macroporous materials and may influence the reaction activity.