Electronic Supplementary Information Enhancement of protein production by microalgae *Dunaliella salina* under mixotrophic condition using response surface methodology

S. Kadkhodaei¹, S. Abbasiliasi¹, T.J. Shun², H. R. Fard Masoumi³, M. S. Mohamed¹, A. Movahedi⁴, R. Rahim⁵, A. B. Ariff¹

¹Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

²Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor 43300 Malaysia

³Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

⁴College of Forest Resources and, Environment of Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.

⁵Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

Supplementary Figure 1. Growth curves of 3 strains in 9 combinational treatments (run) and 1 control based on the absorbance (cellular chlorophyll content). A=D1, B=D2, C=D3.

Supplementary Figure 2. Absorbance spectral curve (400-700 nm) of *D.salina* strains.

Supplementary Figure 3. Relationship between absorbance (680nm) and cell density for *D.salina* strains (D1, D2 and D3). The black lines represent the adjusted absorbance equations. The 5% confidence level has been shown with blue lines. The related correlation fit equations has been provided in Supplementary Table 2.

	Strain		
Statistical Parameters	D1	D2	D3
R-Squared	0.9885	0.8608	0.8577
Adj R-Squared	0.9802	0.7614	0.7560
Pred R-Squared	0.9578	0.3421	0.4235
Adeq Precision	37.319	11.012	10.886
Std. Dev.	0.018	0.13	0.014
Mean	0.58	0.92	0.19
C.V. %	3.10	13.69	7.35
PRESS	8.135E-003	0.82	5.538E-003

Supplementary Table 1. Statistical parameters of the model developed for biomass through response surface methodology in *D.salina* strains.

Strain	Equation	R ²	Adj R ²	StE
D1	$y = 0.0213 x^{0.39}$	0.9531	0.9485	0.0083
	$X = e^{\{[\ln (A_{680})^{+3.849}]/0.39\}}$			
D2	$y = 0.0165 x^{0.3996}$	0.9361	0.9298	0.0075
	$X=e^{\{[\ln{(A_{680})}^{+4.104}]/0.3996\}}$			
D3	$y = 0.0347 x^{0.2944}$	0.9234	0.9157	0.0066
	$X = e^{\{[\ln (A_{680})^{+3.361}]/0.3996\}}$			

Supplementary Table 2. Correlation curve fit equations for three *Dunaliella* strains based on optical density versus cell density, expressed using a general power equation.

Y: absorbance at 680 nm (A₆₈₀), X: cell density (cell/mL)

Adj R²: Adjusted R², StE: Standard Error of Estimate