Tetrabutylammonium tribromide impregnated MCM-48 as a heterogeneous catalyst for selective oxidation of sulfides

Prasanta Gogoi, Sukanya Hazarika and Pranjit Barman

Department of Chemistry, National Institute of Technology, Silchar 788010, Assam, India

General Information All solvents and chemicals were purchased commercially and used without further purification. TBATB and MCM-48 were purchased from sigma aldrich. ¹H and ¹³C Nuclear Magnetic Resonance spectra of pure compounds were acquired at 400 and 100 MHz respectively. All NMR samples were recorded in deuterated chloroform. Chemical shifts (ppm) were recorded with tetramethylsilane (TMS) as the internal reference standard. Elemental analyses were performed on a Flash 2000 Thermo Scientific instrument at NIT Silchar.The TEM characterization were carried out at model no.CM-12 Philips TEM (IIT Kharagpur).

Typical Procedure

A 50% hydrogen peroxide solution (1.2 equiv.) was added to a solution containing the sulfide **1** (0.5 mmol), TBATB/MCM-48 (2 mol%) and 2 mL EtOH. The reaction mixture was stirred at room temperature until completion of reaction was monitored by GC. After complete conversion of the reactant, the product was extracted with EtOAc and washed with water. The organic layer was dried over anhydrous Na_2SO_4 . The solvent was removed under vacuum and the residue was purified by chromatography (eluting with 1:1 hexane/EtOAc).

Preparation of TBATB/MCM-48

TBATB (160 mg, 0.5 mmol), MCM-48 (1.0 g), and DCM (20 mL) were placed in a 50 mL two-neck flask with a magnetic stirring bar. The reaction mixture being stirring for 72 h at 0 °C under an argon atmosphere. The solution was filtered and washed with DCM, and the obtained solid was dried in vacuo.

Fig. 1 Low angle XRD patterns of (a) pure silica MCM-48, and (b) impregnation (TBATB/MCM-48)

Figure 4.TEM images of TBATB/MCM-48 system at different reaction conditions: scale bar 50 nm

Fig. 5 Progress of reactions at room temperature; reaction condition: substrate 1 (0.5 mmol), 1.2 equiv of H₂O₂, TBATB/MCM-48 (2.0 mol%) in EtOH (2 mL).

Fig. 6 Progress of reactions at 80 °C; reaction condition: substrate 1 (0.5 mmol), 1.5 equiv of H₂O₂, TBATB/MCM-48 (2.0 mol%) in EtOH (2 mL).

Dibenzyl sulfoxide (**2a**): ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.27 (m, 10H), 3.90-3.79 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 131.3, 130.6, 127.3, 126.7, 57.2; Anal. Calcd for C₁₄H₁₄OS: C, 73.01; H, 6.13. Found: C, 73.04; H, 6.14.

2-Nitrophenyl benzyl sulfoxide (2b):¹H NMR (400 MHz, CDCl₃) δ 8.23 (d, *J*= 9.1 Hz, 1H), 7.95 (d, *J*= 8 Hz, 1H), 7.83 (t, *J*= 8.24 Hz, 1H), 7.54 (t, *J*=7.92 Hz, 1H), 7.32-7.21 (m, 5H), 4.11 (d, *J*=12.16 Hz, 1H), 3.88 (d, *J*=12.08 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 144.3, 141.7, 134.1, 133.7, 129.3, 129.1, 128.5, 128.2, 127.4, 125.1, 61.4; Anal. Calcd for C₁₃H₁₁NO₃S: C, 59.76; H, 4.24; N, 5.36. Found: C, 59.73; H, 4.27; N, 5.22

4- Chlorophenyl benzyl sulfoxide (**2c**): ¹H NMR (400 MHz, CDCl₃) δ 7.58-7.40 (m, 7H),6.93-6.87 (m, 1H),4.01 (d,*J*=12.4 Hz, 1H), 3.70 (d, *J*=12.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 141.2, 137.5, 133.6, 129.2, 128.7, 127.4, 127.0, 124.1, 63.1; Anal. Calcd for C₁₃H₁₁ClOS: C, 62.27; H, 4.42. Found: C, 62.30; H, 4.41.

4 Nitrobenzyl phenyl sulfoxide (2d):¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, *J*=8.4 Hz, 2H), 7.56-7.40 (m, 5H),7.07 (d, *J*=8.0 Hz, 2H), 4.25 (d, *J*=11.8 Hz, 1H), 3.97 (d, *J*=12.2 Hz, 1H);Anal. Calcd for C₁₃H₁₁NO₃S: C, 59.76; H, 4.24; N, 5.36. Found: C, 59.80; H, 4.21; N, 5.37.

Benzyl p-methoxyphenyl sulfoxide (2e):¹H NMR (400 MHz, CDCl₃) δ 7.34-7.26 (m, 5H), 7.18-7.09 (m, 4H), 4.06 (d, *J*=12.2 Hz, 1H), 3.96 (d, *J*=12.2 Hz, 1H), 3.72 (s, 3H);¹³C NMR (100 MHz, CDCl₃) δ 162.7, 141.2, 131.0, 127.8, 127.0, 126.1, 123.6, 115.2, 63.7, 55.1.

4-methoxy benzyl phenyl sulfoxide (2f):¹H NMR (400 MHz, CDCl₃) δ 7.42-7.34 (m, 5H), 6.91 (d, *J*= 7.84 Hz, 2H), 6.75 (d, *J*=7.5 Hz, 2H), 4.05 (d, *J*=12.2 Hz, 1H), 3.89 (d,*J*=12 Hz, 1H), 3.52 (s, 1H);Anal. Calcd for C₁₄H₁₄O₂S: C, 68.26; H, 5.73. Found: C, 68.25; H, 5.79.

Benzyl 4-bromobenzyl sulfoxide (2g):¹H NMR (400 MHz, CDCl₃) δ 7.33-7.23 (m, 9H), 3.88-3.80 (m, 4H); Anal. Calcd for C₁₄H₁₃BrOS: C, 54.38; H, 4.24. Found: C, 54.40; H, 4.27.

Benzyl 4-methylphenyl sulfoxide (2h):¹H NMR (400 MHz, CDCl₃) δ 7.34-7.25 (m, 5H),7.07-6.93 (m, 4H), 4.09-4.01 (m, 2H), 2.31 (s, 3H); Anal. Calcd for C₁₄H₁₄OS: C, 73.01; H, 6.13. Found: : C, 73.11; H, 6.12.

Benzyl 4-nitrophenyl sulfoxide (2i):¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, *J*= 8.4 Hz, 2H), 7.97 (d, *J*= 8.0 Hz, 2H), 7.57-7.43 (m, 5H), 3.92-3.82 (m, 2H); Anal. Calcd for C₁₃H₁₁NO₃S: C, 59.76; H, 4.24; N, 5.36. Found: C, 59.81; H, 4.20; N, 5.37.

Benzyl phenyl sulfoxide (**2j**): ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.20 (m, 10H), 4.02-3.92 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 138.0, 134.5, 133.2, 130.8, 129.7, 128.8, 127.1, 124.8, 63.2. Anal. Calcd for C₁₃H₁₂OS: C, 72.19; H, 5.59. Found: C, 72.17; H, 5.60.

Diallyl sulfoxide (**2k**): ¹H NMR (400 MHz, $CDCl_3$) δ 6.23-6.09 (m, 4H), 5.51-5.30 (m, 4H), 3.19 (d, J = 7.4 Hz, 2H); ¹³C NMR (100 MHz, $CDCl_3$) δ 125.1, 123.1, 54.6. Anal. Calcd for C₆H₁₀OS: C, 55.35; H, 7.74. Found: C, 55.39; H, 7.71.

Allyl phenyl sulfoxide (2l):¹H NMR (400 MHz, CDCl₃) δ 7.40-7.27 (m, 5H),6.23-5.86 (m, 1H), 5.02 (dd, *J*=1.2 Hz, 8.4 Hz, 2H), 3.41 (d, *J*=7.2 Hz, 2H); Anal. Calcd for C₇H₈OS: C, 59.97; H, 5.75. Found: C, 59.94; H, 5.81.

Methyl phenyl sulfoxide (2n): ¹H NMR (400 MHz, CDCl₃) δ 7.72-7.57 (m, 2H), 7.42-7.33 (m, 3H), 2.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ142.4, 131.3, 129.5, 123.3, 43.5.

4-chlorophenyl 4-nitrophenyl sulfoxide (**2o**): ¹H NMR (400 MHz, CDCl₃) δ 8.31 (d, *J*=7.2 Hz, 2H), 7.86 (d, *J*=7.5 Hz, 2H), 7.68 (d, *J*=7.8 Hz, 2H), 7.59 (d, *J*=8.5 Hz, 2H);Anal. Calcd for C₁₂H₈ClNO₃S: C, 51.16; H, 2.86; N, 4.97. Found: C, 51.11; H, 2.77; N, 4.99. **Methyl 4-nitrophenyl sulfoxide (2p):**¹H NMR (400 MHz, CDCl₃) δ 8.39 (d, *J*=8.0 Hz, 2H), 7.90 (d, *J* = 7.5 Hz, 2H), 2.85 (s, 3H);¹³C NMR (100 MHz, CDCl₃) δ 152.6, 150.1, 126.7, 125.8, 43.5. Anal. Calcd for C₇H₇NO₃S: C, 45.40; H, 3.81; N, 7.56. Found: C, 45.44; H, 3.82; N, 7.62. **Di t-butyl sulfoxide(2q):**¹H NMR (400 MHz, CDCl₃) δ 1.33 (s, 6H);¹³C NMR (100 MHz, CDCl₃ δ 56.7,

25.6.

¹H NMR of Dibenzyl sulfoxide(2a)

¹³C NMR of Dibenzyl sulfoxide(2a)

¹³C NMR of 2-Nitrophenyl benzyl sulfoxide (2b):

¹³C NMR of 4- chlorophenyl benzyl sulfoxide (2c):

¹H NMR of 4 Nitrobenzyl phenyl sulfoxide (2d):

¹H NMR of Benzyl p-methoxyphenyl sulfoxide (2e):

¹³C NMR of Benzyl p-methoxyphenyl sulfoxide (2e):

¹H NMR of 4-methoxy benzyl phenyl sulfoxide (2f):

¹H NMR of Benzyl 4-methylphenyl sulfoxide (2h):

¹H NMR of Benzyl 4-nitrophenyl sulfoxide (2i):

¹H NMR of Benzyl phenyl sulfoxide (2j):

¹³C NMR of Benzyl phenyl sulfoxide (2j):

¹H NMR of Diallyl sulfoxide (2k):

¹³CNMR of Diallyl sulfoxide (2k):

¹H NMR of Allyl phenyl sulfoxide (2l):

¹³C NMR of Methyl phenyl sulfoxide (2n):

¹H NMR of Methyl 4-nitrophenyl sulfoxide (2p):

¹³C NMR of Methyl 4-nitrophenyl sulfoxide (2p):

¹H NMR of Di t-butyl sulfoxide(2q):

¹³C NMR of Di t-butyl sulfoxide(2q):

