Supporting information for

Low temperature synthesis of rutile  $TiO_2$  single-crystal nanorods with exposed (002) facets and its decoration of gold nanoparticles for photocatalytic application

Lijuan Bu,<sup>a</sup> Wenjing Yang<sup>c</sup> and Hai Ming<sup>b</sup>\*

<sup>a</sup>Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.

<sup>b</sup>College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China; E-mail: lunaticmh@163.com.

<sup>c</sup>Reliability Research and Analysis Center, CEPREI (East China) Laboratories, The Fifth Research Institute of MIIT East China, P. R. China.



Fig. S1 The absorption plots of RhB on the different photocatalysts under the dark condition, and  $C_0$  is the pristine concentration (10 ppm).



Fig. S2 (a) and (b) TEM images of Au/P25 with different magnification.



Fig. S3 Reaction time dependence of the relative concentration of the RhB in solution over Au/TNRs during repeated photodecomposition experiments, and  $C_0$  is the relative concentration of the RhB in solution after balancing absorption.

| Kind of Catalyst                             | Kind of light | Particle Size | Kind of reaction                     | Optimal Au     | Simple Reason         |
|----------------------------------------------|---------------|---------------|--------------------------------------|----------------|-----------------------|
|                                              | driven        | of Au         |                                      | Size           |                       |
| Au/TiO <sub>2</sub> (A or R) <sup>[S1]</sup> | UV            | 3-30 nm       | Ethanol $\rightarrow$ H <sub>2</sub> | 3-12 nm        | Electron-hole         |
|                                              |               |               |                                      |                | separation            |
| Au/TiO <sub>2</sub> <sup>[S2]</sup>          | UV            | 2-10 nm       | CO oxidation                         | Beyond 2       | Interface, coordinate |
|                                              |               |               |                                      | nm             | sites                 |
| Au/P25 <sup>[S3]</sup>                       | UV            | 2-25 nm       | Degradation of MO                    | 2-5 nm         | Size-dependent        |
| Au/TiO <sub>2</sub> (A) <sup>[S4]</sup>      | UV            | 2-4 nm        | Degradation of MO                    | 2.5 nm         | Synergetic action     |
| Au/TiO <sub>2</sub> (AR) and                 | UV and Vis    |               | Acetone degradation                  | 5.3 and 7.7 nm | Light harvester,      |
| Au/TiO <sub>2</sub> (A) <sup>[S5]</sup>      |               |               |                                      |                | Charge injection      |
| Au/P25 <sup>[S6]</sup>                       | Vis           | 9.5–3.5 nm    | Degradation of                       | 3.5 nm         | Surface to volume     |
|                                              |               |               | Salicylic acid                       |                | ratio, interface      |
| Au/P25 <sup>[S7]</sup>                       | UV-Vis        | 1.8 to 3.0 nm | Degradation of MO                    | 2.5 nm         | Fermi energy          |
| $Au/TiO_2(A)^{[S8]}$                         | UV-Vis        | 5-100nm       | Phenol degradation                   | 5 nm           | Charge separation     |
| Au/P25 <sup>[S9]</sup>                       | UV-Vis        | 6.1-7.6 nm    | Degradation of MO                    | 6.1 nm         | Coupled effect        |
| Au/P25 <sup>[S10]</sup>                      |               | 5 nm          | CO oxidation                         | 5 nm           | Plasma                |
| $TiO_2/Au^{[S11]}$                           | Vis           | 3-8 nm        | Photocurrent                         | 3 nm           | Fermi level           |
| Au/TiO <sub>2</sub> (A) <sup>[S12]</sup>     | Vis           | 20-90 nm      | Degradation of MB                    | 20-90 nm       | Surface plasmon       |
|                                              |               |               | and H <sub>2</sub> evolution         |                | resonance             |

**Table S1.** A list of  $Au/TiO_2$  and Au/P25 catalysts applied in variable catalytic reactions and their reported optimal Au size and its effects on the reactions.

Note: A, R, MB, and MO are abbreviation of Anatase, Rutile, methyl blue and methyl orange respectively.

## References

- S1. M. Murdoch, G. I. N. Waterhouse, M. A. Nadeem, J. B. Metson, M. A. Keane, R.
  F. Howe, J. Llorca and H. Idrissc, *Nature Chemistry*, 2011, 3, 489-492.
- S2. H. Overbury, V. Schwartz, D. R. Mullins, W. Yan and S. Dai, *Journal of Catalysis*, 2006, 241, 56-65.
- S3. M. M. Khan, S. Kalathil, J. Lee and M. H. Cho, *Bull. Korean Chem. Soc.*, 2012, 33, 1753.
- S4. J. Li and H. C. Zeng, Chem. Mater., 2006, 18, 4270-4277.
- S5. B. Cojocaru, Ş. Neaţu, E. Sacaliuc-Pârvulescu, F. Lévy, V. I. Pârvulescu and H. Garci, *Applied Catalysis B: Environmental*, 2011, **107**, 140-149.
- S6. R. Kaur and B. Pal, *Journal of Molecular Catalysis A: Chemical*, 2012, 355, 39-43.
- S7. B. Z. Tian, J. L. Zhang, T. Z. Tong and F. Chen, *Applied Catalysis B: Environmental*, 2008, **79**, 394-401.
- S8. M. C. Hidalgo, J. J. Murcia, J. A. Navío and G. Colón, *Applied Catalysis A: General*, 2011, **397**, 112-120.
- S9. S. Oros-Ruiz, R. Gómez, R. López, A. Hernández-Gordillo, J. A. Pedraza-Avella,
  E. Moctezuma and E. Pérez, *Catalysis Communications*, 2012, 21, 72-76.
- S10. H.-Y. Fan, C. Shi, X.-S. Li, S. Zhang, J.-L. Liu and A.-M. Zhu, *Applied Catalysis B: Environmental*, 2012, **119-120**, 49-55.
- V. Subramanian, E. E. Wolf and P. V. Kamat, J. Am. Chem. Soc., 2004, 126, 4943-4950.
- S12. Z. F. Bian, T. Tachikawa, P. Zhang, M. Fujitsuka and T. Majima, J. Am. Chem. Soc., 2014, 136, 458-465.