A highly selective CHEF-type chemosensor for monitoring Zn²⁺ in aqueous solution and living cells

Jae Jun Lee,^a Seul Ah Lee,^a Hyun Kim,^a LeTuyen Nguyen,^b Insup Noh,^b Cheal Kim^{a*}

^aDepartment of Fine Chemistry and Department of Interdisciplinary Bio IT Materials, Seoul National University of Science and Technology, Seoul 139-743, Republic of Korea. Fax: +82-2-973-9149; Tel: +82-2-970-6693; E-mail: <u>chealkim@seoultech.ac.kr</u> ^bDepartment of Chemical and Biomolecular Engineering, and Convergence Program of Biomedical Engineering and Biomaterials, Seoul National University of Science &

Technology, Seoul 139-743, Republic of Korea.

Fig. S1 UV-vis absorption spectra of **1** (10 μ M) obtained during the titration with Zn(NO₃)₂ (0.1-1.5 equiv) in bis-tris buffer solution at room temperature.

Fig. S2 Job plot for the binding of **1** with Zn^{2+} . Absorbance at 312 nm was plotted as a function of the molar ratio $[Zn^{2+}]/([1] + [Zn^{2+}])$. The total concentration of zinc ions with receptor **1** was 4.0 x 10⁻⁵M.

Fig. S3 Benesi-Hildebrand equation plot (fluorescence intensity at 521 nm) of 1, assuming 1:1 stoichiometry for association between 1 and Zn^{2+} .

Fig. S4 Determination of the detection limit based on change in the ratio (fluorescence intensity at 521 nm) of 1 (10 μ M) with Zn²⁺.

Fig. S5 Competitive selectivity of 1 (10 μ M) toward Zn²⁺ (1.5 equiv) in the presence of other metal ions (15 equiv) with an excitation of 355 nm in buffer solution (10 mM bis-tris, pH 7.0).

Fig. S6 ¹H NMR titration of **1** with Zn(NO₃)₂ in CD₃CN.

Fig. S7 (a) Fluorescence spectral changes of **1** (10 μ M) after the sequential addition of Zn²⁺ and EDTA in buffer solution (10 mM bis-tris, pH 7.0). (b) Reversible changes in fluorescence

intensity of 1 (10 μ M) at 521 nm after the sequential addition of Zn²⁺ and EDTA.

Fig. S8 Fluorescence intensity (at 521 nm) of **1** as a function of Zn(II) concentration ([**1**] = 20 μ mol/L and [Zn(II)] = 1.00-10.00 μ mol/L). Conditions: all samples were conducted in buffer-MeOH solution (999:1, 10 mM bis-tris, pH 7.0). λ_{ex} and λ_{em} were 355 and 521 nm, respectively.

Fig. S9 Energy-minimized structures for (a) **1** and (b) **1-**Zn²⁺ complex. The major bond length and angle are indicated.

(a)

(a)

Fig. S10 The major molecular orbital contours for (a) **1** and (b) $1-Zn^{2+}$ complex (Isosurface = 0.030 electron bohr⁻³).