Electronic Supplementary Information

Facile synthesis of 3D flower-like porous NiO architectures with an excellent capacitance performance

Xijian Liu,^{*ab}Jiachang Zhao,^a Yunjiu Cao,^{ab} Wenyao Li,^{ab} Yangang Sun, ^{*a}Jie Lu,^a Yong Men^a and Junqing Hu^b

^aCollege of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China; Email: liuxijian@sues.edu.cn; E-mail: ygsun021@yahoo.com ^bState Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.

Supplementary Table and Figures

Electrode Materials	Specific Capacitance	Ref.
3D flower-like porous NiO	1609 F/g at 2 A/g or	This work
	1574 F/g at 5 mV/s	
NiO nanoparticles	182 F/g at 4.4 A/g	1
NiO nanowires	670 F/g at 1 A/g	2
porous NiO nanotube arrays	675 F/g at 2 A/g	3
porous NiO nanocolumns	390 F/g at 5 A/g	4
NiO nanoplates	285 F/g at 5 A/g	4
NiO nanoslices	176 F/g at 5 A/g	4
porous NiO nanosheets	1025 F/g at 3 A/g	5
ordered mesoporous NiO film	590 F/g at 2.5 mV/s	6
porous NiO hollow spheres	282 F/g at 2 A/g	7
flowerlike NiO hollow nanosphere	770 F/g at 2 A/g	8
hierarchical porous NiO nanoflowers	265 F/g at 5 mV/s	9
NiO nanoflower	333 F/g at 2 A/g	10
flower-like α-Ni(OH) ₂ microspheres	1297 F/g at 2 A/g	11

Tab.S1 A comparison of various published results of Ni-based supercapacitors

Fig.S1 (a) XRD patterns of the as-synthesized 3D hierarchical $Ni(OH)_2$ flower-like architectures (i) and the $Ni(OH)_2$ powders from the JCPDS card (ii) (No:14-0117), respectively.(b, c and d) Low-, medium- and high- magnification SEM images of as-synthesized 3D hierarchical Ni(OH)₂ flower-like architectures.

Fig.S2 SEM images of Ni(OH)₂ structures synthesized without glucose (a) and with 50 mg glucose (b).

Fig.S3 Specific capacitances of the as-synthesized 3D flower-like porous NiO at different scan rates.

Fig.S4 Electrochemical impedance spectra before and after cycling

References

- 1. A. Allagui, A. H. Alami, E. A. Baranova and R. Wuethrich, *J. Power Sources*, 2014, **262**, 178-182.
- 2. B. Vidhyadharan, N. K. M. Zain, I. I. Misnon, R. Abd Aziz, J. Ismail, M. M. Yusoff and R. Jose, *J. Alloy Compd.*, 2014, **610**, 143-150.
- 3. F. Cao, G. X. Pan, X. H. Xia, P. S. Tang and H. F. Chen, *J. Power Sources*, 2014, **264**, 161-167.
- X. Zhang, W. Shi, J. Zhu, W. Zhao, J. Ma, S. Mhaisalkar, T. L. Maria, Y. Yang, H. Zhang, H. H. Hng and Q. Yan, *Nano Res.*, 2010, 3, 643-652.
- X. Sun, G. Wang, J. Y. Hwang and J. Lian, J. Mater. Chem., 2011, 21, 16581-16588.
- 6. D.-D. Zhao, M. W. Xu, W.-H. Zhou, J. Zhang and H. L. Li, *Electrochim. Acta*, 2008, **53**, 2699-2705.
- X. Yan, X. Tong, J. Wang, C. Gong, M. Zhang and L. Liang, *Mater. Lett.*, 2013, 95, 1-4.

- C. Y. Cao, W. Guo, Z. M. Cui, W. G. Song and W. Cai, *J. Mater. Chem.*, 2011, 21, 3204-3209.
- 9. Y. Ren and L. Gao, J. Am. Ceram. Soc., 2010, 93, 3560-3564.
- 10. S.I. Kim, J. S. Lee, H. J. Ahn, H. K. Song and J. H. Jang, *Acs Appl. Mater. Interfaces*, 2013, **5**, 1596-1603.
- H. Du, L. Jiao, K. Cao, Y. Wang and H. Yuan, *Acs Appl. Mater. Interfaces*, 2013, 5, 6643-6648.