Supporting Information

Hybrid nanoparticles based on sodium carboxymethylcellulose-graft-histidine and TPGS for effective delivery and enhanced chemosensitization of docetaxel

Weihua Jiang^a, Lei Yang^a, Lipeng Qiu^b, Jingwen Xu^c, Xiuchun Yang^a, Ju Wang^a, Hui

Zhou^d and Dongkai Wang^a*

^a Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China.

^b Department of Pharmaceutics, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR. China.

^c Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China.

^d Pharmaceutical Department, The First Hospital of China Medical University, Shenyang, 110001, P.R. China.

Fig. S1 Schematic representation of the synthesis of CMH copolymer.

Fig. S2 (A) Excitation spectra of pyrene in CMH copolymer solution with different concentrations (mg/mL). (B) The dependence of excitation fluorescence intensity ratio of pyrene (I_{338}/I_{335}) on the logarithmic concentration of CMH copolymer.