Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

> Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information (ESI)

CVD synthesis of Cu₂O films for catalytic combustion of VOCs

Guan-Fu Pan,^{a,b} Shi-Bin Fan,^{a,b} Jing Liang,^{a,c} Yue-Xi Liu^{a,b} and Zhen-Yu Tian^{a,*}

^a Institute of Engineering Thermophysics, Chinese Academy of Sciences, 11 Beisihuanxi Road, Beijing 100190, China. ^b University of Chinese Academy of Sciences, Beijing 100049, China

^c School of Energy, Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China * Corresponding author. Tel: +86-010 82543184, Fax: +86-010 82543184; E-mail: tianzhenyu@iet.cn.

Table S1: Experimental conditions for the deposition of Cu₂O

Precursor	Cu(acac) ₂	
Solvent	Ethanol	
Concentration of precursor	2.5 mM	
Frequency	4 Hz	
Opening time	2.5 ms	
Feeding rate	1.03 mL/min	
Evaporation temperature	180 °C	
Substrate temperature	270 °C	
System pressure (kPa)	3.0	
N ₂ (SLM)	0.5	
O ₂ (SLM)	1.0	
Substrates	Glass, planar or mesh of stainless steel	

Table S2: Chemical composition of Cu₂O thin films

Non-etched sample			
Element	Peak BE	Proportion (%)	
C 1s	284.78	17.11	
O 1s	529.87	43.73	
Cu 2p	933.62	39.16	
5.7 nm–etched sample			
Element	Peak BE	Proportion (%)	
C 1s	284.80	6.12	
O 1s	529.61	41.99	
Cu 2p	932.35	51.89	
95 nm-etched sample			
Element	Peak BE	Proportion (%)	
C 1s	284.78	1.54	
O 1s	530.14	35.62	
Cu 2p	932.37	62.84	

Note: The subscripts 1s and 2p refer to electron orbits of XPS.

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2015

High-resolution entire XPS spectra of Cu_2O films with different etching depth are shown in Fig. S1. The most obvious peaks come from the presence of copper element consisting of Cu $2p_{3/2}$ and Cu $2p_{1/2}$. The Cu:O ratio falls down from the surface to the bulk due to the gradual decrease of the absorbed oxygen. Moreover, the carbon component declines from surface to the bulk after 95 nm etching. Hence, it can be inferred that the carbon mainly comes from ambient air and the carbon contamination products is negligible inside the Cu₂O films.

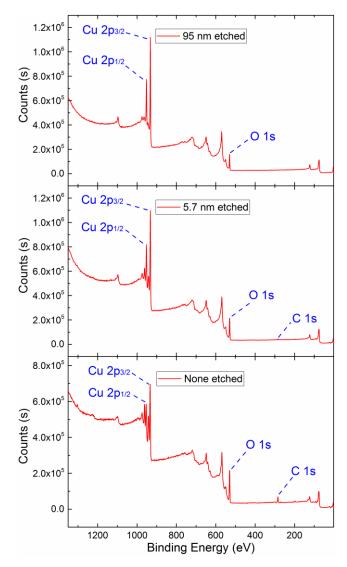


Fig. S1 Entire XPS spectra of Cu₂O films with different etching depth.

Cu 2p spectra of Cu₂O films with different etching depth are shown in Fig. S2. Compared to the standard spectra of both CuO and Cu₂O, it can be easily found that the Cu₂O component becomes deominant in the interior of the films deposited referring to the surface. This phenomenon mainly comes from the contaminations on the surface.

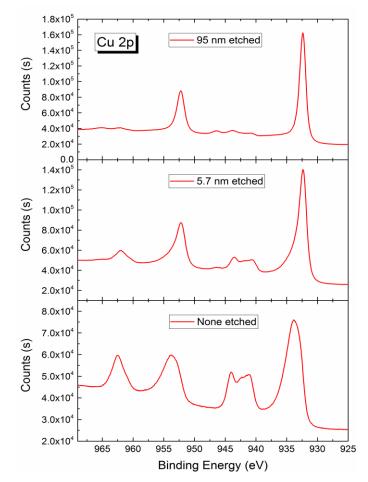


Fig. S2 Cu 2p spectra of Cu₂O films with different etching depth.

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2015

Figure S3 provides the O 1s and C 1s spectra of Cu_2O with different etching depth. With the same variation tendency, both the oxygen and carbon component decrease from the surface to the bulk.

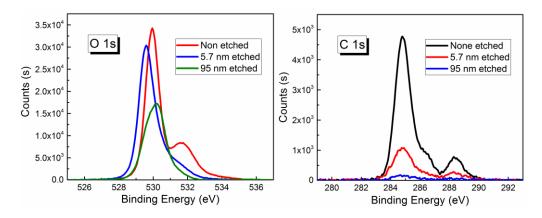


Fig. S3 O 1s and C 1s spectra of Cu₂O surfaces with different etching depth.

Figure S4 presents the releases of CO_2 and CO in the oxidation processes on both Cu_2O -coated mesh and non-coated mesh. The maximum temperatures of CO_2 release in the oxidation processes of C_2H_2 and C_3H_6 agree well with the complete oxidation of C_2H_2 and C_3H_6 .

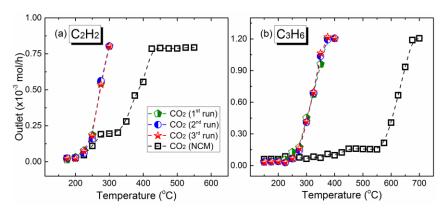


Fig. S4 Outlet profiles of CO and CO₂ during the catalytic tests.