Supplementary Information

Wei Wei^{a,b}, Linlin Guo^{a,b}, Xiaoyang Qiu^a, Peng Qu^a*, Maotian Xu^a* and Lin Guo^b*

^aSchool of Chemistry and Chemical Engineering, Shangqiu Normal University, Wenhua road No. 298, Shangqiu, 476000, P. R. China. ^bSchool of Chemistry and Environment, Beihang University, Beijing 100191, China.

As shown in Fig. S1, the cyclic voltammograms (CV) of LiFePO₄/CNT electrode was tested at 0.1, 0.5 and 1.0 mV/s, respectively. For the diffusion-limited process, the peak current is proportional to the square roots of the scan rate ($v^{-1/2}$) as the following Randles–Sevcik equation:¹

 $I_P = (2.69 \times 10^5) n^{3/2} A D^{1/2} C v^{1/2} \qquad (1)$

Where n is the number of transfer electrons (n =1 for Fe²⁺/Fe³⁺ redox pair); A is the surface of the electrode; D is the diffusion coefficient; and C is the concentration of reactants. The linear relations shows in Fig. S2 for the LiFePO₄/CNT indicates a diffusion-limited reaction. In addition, the slope of the fitted line is dependent on the diffusion coefficient of Li ion, and D = 1.12×10^{-10} cm² s⁻¹ is obtained according to Eq. (1), which is 3 ~ 4 orders higher than bare LiFePO₄ electrode (10⁻¹³ ~ 10⁻¹⁴ cm² s⁻¹).² Therefore, the prepared ionic conductivity LiFePO₄/CNT electrode is greatly improved.

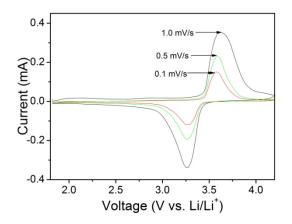


Fig. S1. CV curves of LiFePO₄/CNT electrode at different scanning rates.

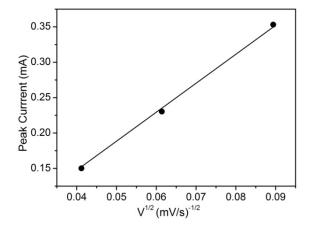


Fig. S2. The relation between peak current and the square roots of the scan rate.

References

- 1. K. Tang, X. Yu, J. Sun, H. Li, X. Huang, *Electrochimica Acta*, 2011, 56, 4869.
- 2. S. Franger, F. L. Cras, C. Bourbon and H. Rouault, *Electrochem. Solid-State Lett.*, 2002, 5, A231.