Supporting Information

Manganese-Phosphomolybdate Molecular Catalyst for Electron Transfer Reaction of Ferricyanide to Ferrocyanide

Kaining Gong, Yunping Liu, and Zhangang Han*

^a College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang,

050024, China. E-mail: hanzg116@126.com

	Table S1	Crystal	data and	l structure	refinement	details	for the	hybrids	1-3.
--	----------	---------	----------	-------------	------------	---------	---------	---------	------

hybrid	1	2	3	
Empirical formula	$C_{143}H_{264}Mn_4Mo_{48}N_{22}Na_6O_{262}P_{32}$	$C_{26}H_{62}Mn_2Mo_{12}N_4Na_4O_{71}P_8$	C ₅₂ H ₉₂ Mn ₃ Mo ₁₂ N ₈ Na ₃ O ₇₅ P ₉	
Formula weight	12436.92	3167.60	3692.96	
Crystal system	Monoclinic	Monoclinic	Orthorhombic	
Space group	<i>P2(1)/c</i>	C2/c	Pnma	
<i>a</i> (Å)	23.0522(11)	21.1291(11)	29.508(19)	
<i>b</i> (Å)	15.7570(7)	18.4006(9)	23.454(15)	
c (Å)	23.8647(11)	21.8843(11)	15.429(10)	
α, β, γ (°)	90, 90.9170(10), 90	90, 100.7960(10), 90	90, 90, 90	
Volume (Å ³), Z	8667.3(7), 2	8357.8(7), 4	10678(12), 4	
Density(calculated)(Mg·m ⁻³)	2.373	2.509	2.284	
Absorption coefficient (mm ⁻¹)	2.084	2.321	1.961	
<i>F</i> (000)	5984	6088	7140	
Crystal size (mm ³)	$0.21\times0.19\times0.15$	$0.17 \times 0.15 \times 0.13$	$0.19\times0.15\times0.13$	
θ(°)	1.77 - 25.01	1.65 - 25.01	1.91 - 25.01	
Reflections collected	41517	20341	50207	
Independent reflections $(R_{(int)})$	15263 [$R_{(int)} = 0.0288$]	7362 [$R_{(int)} = 0.0173$]	9661 $[R_{(int)} = 0.0248]$	
Max. and min. Transmission	0.732 and 0.652	0.740 and 0.681	0.775 and 0.710	
Data/restraints/parameters	15263 / 1308 / 1222	7362 / 43 / 649	9661 / 66 / 766	
Goodness-of-fit on F^2	1.067	1.000	1.061	
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0472, wR_2 = 0.1193$	$R_1 = 0.0293, wR_2 = 0.0878$	$R_1 = 0.0338, wR_2 = 0.1015$	
R indices (all data)	$R_1 = 0.0590, wR_2 = 0.1299$	$R_1 = 0.0311, wR_2 = 0.0893$	$R_1 = 0.0373, wR_2 = 0.1050$	
${}^{a}R_{1} = \sum F_{o} - F_{c} / \sum F_{o} ;$ ${}^{b}wR_{2} = \sum [w(F_{o}^{2} - F_{o}^{2})^{2}] / \sum [w(F_{o}^{2})^{2}]^{1/2}$				

	Hybrid 1	Hybrid 2	Hybrid 3
Mo1	5.227	5.193	5.140
Mo2	5.252	5.260	5.158
Mo3	5.207	5.210	5.152
Mo4	5.301	5.228	5.190
Mo5	5.206	5.256	5.166
Mo6	5.233	5.289	5.165

 Table S2. BVS calculations of Mo centers in hybrids 1-3

Table S3. BVS calculations of P centers in compounds 1-3					
	Hybrid 1	Hybrid 2	Hybrid 3		
P1	4.798	4.801	4.862		
P2	4.925	4.862	4.801		
P3	4.828	4.803	4.482		
P4	4.808	4.851	4.809		

Table S4. BVS calculations of Mn centers in compounds 1-3					
	Hybrid 1	Hybrid 2	Hybrid 3		
Mn1	1.989	2.157	2.012		
Mn2	1.960	1.989	1.962		

Fig. S3 XRD curves of (a) of hybrid 1

(b) XRD of hybrid 2

(c) XRD of hybrid **3**

Fig. S5 The colors of solutions of Fe^{3+} to Fe^{2+} with the presence of **1**

Fig. S6 Successive UV-visible absorption spectra for aqueous solutions of the catalytic reduction reactions of $[Fe(CN)_6]^{3-}$ and $S_2O_3^{2-}$ in the presence of $(H_2bpp)_3[PMo^{VI}_9Mo^V_3O_{40}]$

Fig. S7 The solution color of Fe^{3+} with $Na_2S_2O_3$ as reductant with the presence of $H_3PMo_{12}O_{40}$

Fig. S8 Comparisons of IR spectra of the hybrid 1, and after catalysis

Fig. S9 XPS for Mo of hybrid 1 before catalysis and after catalysis.