Parallel Synthesis and Biological Evolution of Quinic Acid Derivatives as Immuno-suppressing Agents against T-cell Receptors

Chih-Yu Huang¹, Li-Hsun Chen², Hsuan-Yu Huang¹, Feng-Sheng Kao¹, Yun-Ta Lee^{2,3}, Manikandan Selvaraju², Chung-Ming Sun^{2,3}* and Hueih-Min Chen¹*

- ¹National Applied Research Laboratories, National Nano Device Laboratories, Biomedical Group, Hsinchu 300-10, Taiwan.
- ²Department of Applied Chemistry, National Chiao-Tung University, Hsinchu 300-10, Taiwan.

³Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 807-08, Taiwan.

* To whom correspondence should be addressed. E-mail: <u>hmchen@narlabls.org.tw; cmsun@mail.nctu.edu.tw</u>

General experimental methods:

Methanol, dichloromethane and acetone were distilled before use. All reactions were performed under an inert atmosphere with unpurified reagents and dry solvents. Analytical thin-layer chromatography (TLC) was performed using 0.25 mm silica gel coated plates. Flash chromatography was performed using the indicated solvent and silica gel 60 (230-400 mesh). All the microwave experiments were performed in CEM microwave reactor under optimized reaction conditions of power and pressure. ¹H NMR (300 MHz) and ¹³C NMR (75 MHz) spectra were recorded on a 300 MHz spectrometer. Chemical shifts are reported in parts per million (ppm) on the scale from an internal standard.

Biological Methods:

Materials- Jurkat human acute T-cell leukemia line was obtained from Bioresource Collection and Research Center (BCRC, Hsinchu, Taiwan). RPMI-1640 medium was purchased from HyClone (Logan, UT, USA). Five-week-old female BALB/c mice were purchased from BioLASCO (Yilan, Taiwan). Fetal bovine serum (FBS) was purchased from Biological Industries (Haemek, Israel). Penicillin–Streptomycin– Neomycin (PSN) Antibiotic Mixture was purchased from Gibco BRL (Rockville, MD, USA). ELISA kits for human IL-2 and mouse IgG/IgE were obtained from R&D Systems (Minneapolis, MN, USA) and Bethyl (Montgomery, TX, USA), respectively. Anti-IL-2 mAb was supplied by R&D Systems (Minneapolis, MN, USA). Anti-human CD28 antibody and anti-human CD3 antibody were purchased from BioLegend (San Diego, CA, USA). 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT), ovalbulmin (OVA; albumin from chicken egg white), complete Freund's adjuvant, heparin sodium salt from porcine intestinal mucosa and 3,3',5,5' tetramethylbenzidine (TMB) liquid substrate system for ELISA were purchased from Sigma (St. Louis, MO, USA). [3-(2-aminoethylamino)propyl] trimethoxy silane (3-APTMS) (99%), glutaraldehyde (25%) and bovine serum albumin (BSA) were obtained from Sigma Aldrich (St. Louis, MO, USA). Both CD28 and CD80 receptors were from ID Labs (London, ON, Canada). Cynarin was purchased from AppliChem (Darmstadt, Germany). Silicon-made tips for AFM (NanoWizard, JPK Instruments, Berlin, Germany) imaging and force measurement were ordered from Nanosensor (Neuchatel, Switzerland). Water used in this study was de-ionized and distilled.

MTT colorimetric assay- Cytotoxicity of Cyn and Cyn-1324 on T-cells were investigated by MTT colorimetric assay. Jurkat T-cells (5×10^5 cells/ml; 100 µL) were incubated with different concentrations of compounds for 24 h at 37 °C. Cell solutions were then centrifuged at 200g for 10 min and the supernatants were removed. 200 µL MTT (0.5 mg/mL in culture medium) was then added and the cell solutions were incubated again for 4 h at 37 °C. 200 µL DMSO lysis buffer was added into the cell mediums and the concentrations of dissolved MTT crystals were measured by plate reader (Dynatech, Chantilly, VA, USA) at 560 nm. The survival rate (%) were determined as follows: OD_{560nm} of testing sample (cells with derivatives)/OD_{560nm} of control (cells without derivatives)×100%.

Stimulation of T-Cells- Jurkat T-cells were maintained in a humidified atmosphere of 5% CO₂/95% air at 37 °C in RPMI-1640 medium including penicillin, streptomycin and 10% heat-inactivated FBS. In present experiments, Signal 1 and Signal 2 were stimulated *via* addition of anti-CD3 and anti-CD28, respectively. Flat-bottom 96-well plates were coated with 1 μ g/mL of anti-CD3 for 24 h at 4 °C. Wells including

anti-CD3 were then washed twice with phosphate-buffered saline (PBS) to remove unbound anti-CD3. Jurkat T-cells (200 μ L, 2×10⁶ cells/mL) with or without Cyn-1324 (PBS buffer only; control group) were then added to the wells. Cells were activated by anti-CD3 in wells for 15 min (Signal 1 stimulation). Consequently, anti-CD28 (1 μ g/mL) was then added into the wells (for Signal 2 stimulation) or PBS buffer only (for Signal 1 stimulation only) for 24 h at 37 °C. IL-2 release from stimulated T-cells (100 μ L) was then measured by enzyme-linked immunosorbent assay (ELISA; see below section for detail).

IL-2 measurement- A 96-well flat-bottom plate was coated with anti-IL-2 mAb (100 μ L at 4 μ g/mL) in PBS (pH 7.3) at room temperature overnight. The plate was washed three times with 300 µL of PBS containing 0.05% Tween 20 (PBST) and was incubated for more than 1 h with a blocking solution containing 1% bovine serum albumin in PBS. After plates were washed again with PBS-T, 100 µL of testing sample (T-cell incubation medium) and 100 µL of biotinylated anti-IL-2 detection antibodies (400 ng/mL) were added and incubated for 2 h at room temperature. Finally, 100 µL of streptavidin horseradish peroxidase (1/2,000 dilution of a 1.25 mg/mL solution) and 100 μ L of substrate solution containing H₂O₂ and tetramethylbenzidine (1:1 v/v) were added for 20 min in the dark at room temperature. The reaction was terminated by the addition of 50 μ L stop solution (1.0 M H₂SO₄). The optical density of each well at 450 nm was determined using a microplate reader. Inhibited amount of IL-2 expressed from Signal 2 of T-cells was normalized by relative percentage as follows: OD_{450nm} of tested sample (OD_{450nm} of Signal 1 plus Signal 2 stimulation with Cyn-1324 minus OD_{450nm} of Signal 1 stimulation only)/ OD_{450nm} of control (OD_{450nm} of Signal 1 plus Signal 2 stimulation without Cyn-1324 minus OD_{450nm} of Signal 1 stimulation only)×100%.

Immobilization of proteins on tip and chip- Protein (CD28)-protein (CD80) interaction and interruption (by Cyn-1324) can be in vitro investigated by using atomic force spectroscopy. Binding force measurement is established by immobilizing one protein (CD80) on AFM tip (called afm-CD8) and another protein (CD28) on silicon chip (called chip-CD28). The procedures were followed: (a) afm-CD80. AFM tips were cleaned by oxygen plasma cleaner (PCD 150, Taiwan) under 250 mTorr and 80 W for 2 min and immersed in piranha solution ($H_2SO_4 : H_2O_2 = 3 : 1 (v/v)$) for 10 min to remove micro-particles, metal ions, and other organic materials. A self-assembled monolayer (SAM) on the tips was formed by incubation with 3-APTMS (1%) in ethanol for 1 h. After washing the 3-APTMS-coated tips with ethanol/water several times, 2.5% glutaraldehyde (a common cross-linking protein) solution was added and the tips were incubated for 1 h. The unbounded glutaraldehyde was removed by rinsing with water. The treated tips were then inserted into CD80 solution (100 µg/mL) and incubated overnight at 4 °C. (b) chip-CD28, SiO₂ wafer was heated in a horizontal furnace to 1,050 °C. After cutting heated wafer into pieces, similar steps (treating 3-APTMs until adding glutaraldehyde) as shown above were done on chips. These treated chips were then incubated with CD28 solution (25 µg/mL) for 30 min at room temperature. A 40 µg/mL BSA solution was added to both treated tips (afm-CD80) and chips (chip-CD28) to fill-up the vacant space on their surfaces. Washing with NaOH (0.05M) was performed before experiments.

Atomic force spectroscopy (AFM) measurement- Current unbinding force (F_u) measurement via AFM between chip-CD28 and afm-CD80 can be empirically

described as: $F_u = (k_B T / x_\beta) \ln(r x_\beta / k_{off} k_B T)$ (Eq. 1), where k_B , T, x_β , r and k_{off} indicate Boltzmann constant, absolute temperature (K), distance between energy potential minimum and energy barrier maximum, loading rate and dissociation rate (off rate), respectively (19-21). The loading rate (r) can be defined as the rate of force applied to the bond between proteins (e.g., r = pulling velocity × effective spring constant). Due to Eq. 1, F_u is proportional to the logarithm of r. Therefore, selection of an optimum loading rate for measurement of the unbinding forces among proteins may be essential. Upon the loading rate being determined, F_u was measured for the interaction between afm-CD80 and chip-CD28 at more than 200 different locations. To measure the blocking effect of Cyn-1324 on the binding between chip-CD28 and afm-CD80, procedures followed: (a) Cyn-1324 solution (500 µg/mL) was added to the treated chip (including chip-CD28) and incubated for 30 min. The chip including chip-CD28/Cyn-1324 was then washed with PBS buffer; (b) The treated chip (including chip-CD28/Cyn-1324) was then examined by binding with afm-CD80 on AFM tip. Both force curves and unbinding forces were recorded and calculated by using AFM.

Animal immunization and treatment- (a) efficacy test- BALB/c mice (twelve-week-old; n=20) were divided by four groups (5/per group): n1 group (PBS buffer only; control group), n2 group (OVA only), n3 group (OVA/Cyn-1324) and n4 group (OVA/CSA). For n2 group, mice were immunized with 50 µg OVA (in emulsion of a complete Freund's adjuvant) at day_0 and 50 µg OVA (in PBS buffer) from day_7 to day_35 by intraperitoneally injecting weekly. Concurrently, n1 (PBS only), n3 (Cyn-1324; 14mg/kg) and n4 (CSA, 50mg/kg) groups were intraperitoneally injected weekly from day_0 to day_35. After immunization, mice bloods were collected weekly from tail

veins and analyzed by ELISA (see section below for detail). (b) *toxicity test*- BALB/c mice (4 groups; 5/per group) were intraperitoneally injected three times/per week (group_1: treated with PBS after OVA-sentitization; group_2: treated with Cyn-1324 after OVA-sentilization; group_3: treated with CSA after OVA-sentilization and group_4: control group without immunization). Doses used were increasingly changed every two-week from 50 to 400 mg/kg. Mice body weight and mortality were recorded weekly and daily, respectively.

Serum sample preparation and test- (a) sample preparation- Blood collected from mice above were transferred to heparinized tubes and centrifuged at 4,000g for 5 min. Supernatant serums were collected and stored at -80 °C for later experiments. For IgG detection, serum samples were melted and diluted to 10^5 -fold by diluent buffer (1% BSA with 0.05% Tween 20 in PBS buffer). For IgE test, the sample medium was diluted to only 10-fold. (b) ELISA test- Flat-bottomed microtitre plates were coated overnight with 100 µL diluted coating antibody (1 µL anitbody plus PBS buffer to total 100 µL) to each well and washed five times with PBS containing 0.05% Tween 20 (PBS/T). Blocking was done by using block solution (1% BSA in PBS buffer). The plates were then incubated at room temperature for 1 h and washed again by PBS/T buffer. Afterward, serum samples above were added into plates and incubated at room temperature for 1 h. After washing, 100 µL HP-conjugated mouse IgG (or IgE) detection antibody (x75,000) in sample diluent was added. Plates were again incubated for 1 h and washed. 100 µL TMB substrate solution was added. After 15 min, the reaction was stopped by addition of 50 μ L stop solution (1M H₂SO₄). The absorbance was determined at 450 nm. Standard curves (IgG/IgE) were obtained by using known concentrations of IgG (9-500 ng/mL) and IgE (4-250 ng/mL). By using these standard curves, quantities of IgG and IgE from unknown samples can be obtained.

Experimental Section

Generalprocedureforthesynthesisof(3aR,5R,7R,7aS)-5,7-dihydroxy-2,2-dimethyl-N-(2-phenylethyl)hexahydro-1,3-benzodioxole-5-carboxamide (3a).

Spectral data

(3a*R*,5*R*,7*R*,7a*S*)-5,7-dihydroxy-2,2-dimethyl-*N*-(2-phenylethyl)hexahydro-1,3-be nzodioxole-5-carboxamide (3a)

¹H NMR (300 MHz, CDCl₃) δ 7.32 – 7.19 (m, 5H), 7.07 (t, J = 5.6 Hz, 1H), 4.86 (s, 1H), 4.60 – 4.43 (m, 1H), 4.18 – 4.07 (m, 1H), 3.83 – 3.79 (m, 1H), 3.52 (dd, J = 13.2, 6.8 Hz, 2H), 3.39 (s, 1H), 2.90 – 2.73 (m, 1H), 2.44 – 2.31 (m, 1H), 2.23 – 2.11 (m, 1H), 2.05 – 1.88 (m, 2H), 1.48 (s, 3H), 1.33 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 176.6, 138.5, 128.8, 128.7, 126.7, 108.7, 76.1, 72.9, 72.1, 65.9, 40.5, 37.0, 35.6, 34.4, 27.1, 24.4; MS (EI) 335.2; HRMS (EI) calcd. for C₁₈H₂₅NO₅ 335.1733; found 335.1729; IR (cm⁻¹, neat) 3359, 1644.

(3a*R*,5*R*,7*R*,7a*S*)-5,7-dihydroxy-2,2-dimethyl-*N*-(3-methylbutyl)hexahydro-1,3-be nzodioxole-5-carboxamide (3b)

¹H NMR (300 MHz, CDCl₃) δ 6.97 (s, 1H), 4.97 (s, 1H), 4.63 – 4.34 (m, 1H), 4.10 (d, J = 3.9 Hz, 1H), 3.78 (s, 1H), 3.46 (s, 1H), 3.31 – 3.15 (m, 2H), 2.38 (dd, J = 15.6, 2.1 Hz, 1H), 2.18 (dd, J = 14.8, 5.1 Hz, 1H), 1.98 (ddd, J = 14.6, 8.9, 2.7 Hz, 2H), 1.65 – 1.49 (m, 1H), 1.46 (s, 3H), 1.38 (dd, J = 14.5, 7.2 Hz, 2H), 1.30 (s, 3H), 0.87 (d, J =6.6 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃); δ 176.4, 108.6, 76.1, 72.8, 72.1, 65.9, 38.2, 37.7, 37.1, 34.4, 27.1, 25.9, 24.4, 22.5; MS (EI) 301.3; HRMS (EI) calcd. for C₁₅H₂₇NO₅ 301.1889; found 301.1887; IR (cm⁻¹, neat) 3399, 1646.

(3a*R*,5*R*,7*R*,7a*S*)-5,7-dihydroxy-*N*-(3-methoxypropyl)-2,2-dimethylhexahydro-1,3 -benzodioxole-5-carboxamide (3c)

¹H NMR (300 MHz, CDCl₃) δ 7.43 (s, 1H), 4.96 (s, 1H), 4.64 – 4.52 (m, 1H), 4.21 – 4.10 (m, 1H), 3.80 (s, 1H), 3.47 (t, J = 5.8 Hz, 2H), 3.43 – 3.35 (m, 2H), 3.34 (s, 3H), 2.43 (dd, J = 15.6, 2.4 Hz, 1H), 2.26 (ddd, J = 15.0, 5.1, 1.5 Hz, 1H), 2.03 (ddd, J = 14.9, 9.0, 3.0 Hz, 2H), 1.84 – 1.76 (m, 2H), 1.50 (s, 3H), 1.34 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 176.6, 108.7, 76.0, 72.8, 72.1, 71.3, 65.9, 58.9, 37.8, 37.1, 34.4, 29.0, 27.1, 24.4; MS (EI) 303.2; HRMS (EI) calcd. for C₁₄H₂₅NO₆ 303.1682; found 303.1687; IR (cm⁻¹, neat) 3399, 1646.

(3a*R*,5*R*,7*R*,7a*S*)-*N*-butyl-5,7-dihydroxy-2,2-dimethylhexahydro-1,3-benzodioxole -5-carboxamide (3d)

¹H NMR (300 MHz, CDCl₃) δ 7.00 (s, 1H), 4.95 (d, J = 3.7 Hz, 1H), 4.58 – 4.49 (m, 1H), 4.15 – 4.07 (m, 1H), 3.83 – 3.75 (m, 1H), 3.43 (s, 1H), 3.34 – 3.14 (m, 2H), 2.40 (dd, J = 15.6, 2.5 Hz, 1H), 2.21 (ddd, J = 15.0, 5.3, 1.4 Hz, 1H), 1.99 (ddd, J = 14.8, 8.6, 3.1 Hz, 2H), 1.56 – 1.40 (m, 2H), 1.47 (s, 3H), 1.39 – 1.23 (m, 2H), 1.31 (s, 3H), 0.89 (t, J = 7.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 176.6, 108.7, 76.1, 72.8, 72.1, 65.9, 39.2, 37.1, 34.5, 31.5, 27.1, 24.4, 20.0, 13.8; MS (EI) 287.2; HRMS (EI) calcd. for C₁₄H₂₅NO₅ 287.1733; found 287.1725; IR (cm⁻¹, neat) 3739, 3370, 1646. (**3a***R*,*5R*,*7R*,*7***a***S*)-**5**,*7*-**di**hydroxy-2,2-**dimethyl**-*N*-(2-**methylpropyl)hexahydro-1,3benzodioxole-5-carboxamide (3e)**

Chemical Formula: C₁₄H₂₅NO₅ Exact Mass: 287.1733

¹H NMR (300 MHz, CDCl₃) δ 7.06 (s, 1H), 4.63 – 4.52 (m, 1H), 4.15 (ddd, J = 6.9, 2.9, 1.5 Hz, 1H), 3.86 – 3.75 (m, 1H), 3.10 (td, J = 6.7, 2.1 Hz, 2H), 2.44 (dd, J = 15.6, 2.5 Hz, 1H), 2.25 (ddd, J = 15.0, 5.1, 1.5 Hz, 1H), 2.03 (ddd, J = 14.9, 7.3, 3.1 Hz, 2H), 1.91 – 1.68 (m, 1H), 1.49 (s, 1H), 1.34 (s, 1H), 0.91 (d, J = 6.7 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 176.7, 108.7, 76.0, 72.9, 72.1, 65.8, 46.7, 37.1, 34.5, 28.6, 27.1, 24.4, 20.1; MS (EI) 287.2; HRMS (EI) calcd. for C₁₄H₂₅NO₅ 287.1733; found 287.1726; IR (cm⁻¹, neat) 3737, 3399, 1646.

(3a*R*,5*R*,7*R*,7a*S*)-*N*-[2-(cyclohex-1-en-1-yl)ethyl]-5,7-dihydroxy-2,2-dimethylhexa hydro-1,3-benzodioxole-5-carboxamide (3f)

¹H NMR (300 MHz, CDCl₃) δ 6.97 (s, 1H), 5.45 (s, 1H), 4.96 (s, 1H), 4.62 – 4.52 (m, 1H), 4.14 (d, *J* = 6.9 Hz, 1H), 3.80 (s, 1H), 3.45 – 3.23 (m, 3H), 2.42 (dd, *J* = 15.6, 2.1 Hz, 1H), 2.24 (dd, *J* = 15.0, 5.0 Hz, 1H), 2.14 (t, *J* = 6.7 Hz, 2H), 2.09 – 1.82 (m, 6H), 1.69 – 1.50 (m, 4H), 1.49 (s, 3H), 1.33 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 176.5, 134.3, 124.0, 108.7, 76.0, 72.8, 72.1, 65.8, 37.6, 37.1, 37.0, 34.5, 27.9, 27.1, 25.3, 24.4, 22.9, 22.4; MS (EI) 339.2; HRMS (EI) calcd. for C₁₈H₂₉NO₅ 339.2046; found 339.2055; IR (cm⁻¹, neat) 3739, 3396, 1646.

(3a*R*,5*R*,7*R*,7a*S*)-*N*-(3,3-diphenylpropyl)-5,7-dihydroxy-2,2-dimethylhexahydro-1 ,3-benzodioxole-5-carboxamide (3g)

¹H NMR (300 MHz, CDCl₃) δ 7.40 – 7.15 (m, 10H), 7.09 (t, J = 5.9 Hz, 1H), 4.59 – 4.51 (m, 1H), 4.15 (dd, J = 6.8, 2.2 Hz, 1H), 4.02 – 3.90 (m, 1H), 3.86 (dt, J = 5.9, 3.1 Hz, 1H), 3.24 (dd, J = 14.2, 6.3 Hz, 2H), 2.48 – 2.16 (m, 4H), 2.10 – 1.96 (m, 2H), 1.52 (s, 3H), 1.35 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 176.5, 143.9, 128.6, 127.7, 126.4, 108.6, 76.2, 72.9, 72.1, 65.9, 48.9, 38.2, 37.0, 35.0, 34.3, 27.1, 24.4; MS (EI) 425.0; HRMS (EI) calcd. for C₂₅H₃₁NO₅ 425.2202; found 425.2202; IR (cm⁻¹, neat) 3401, 1648.

(3a*R*,5*R*,7*R*,7a*S*)-*N*-cyclopentyl-5,7-dihydroxy-2,2-dimethylhexahydro-1,3-benzo dioxole-5-carboxamide (3h)

¹H NMR (300 MHz, CDCl₃) δ 6.92 (d, J = 6.5 Hz, 1H), 4.64 – 4.52 (m, 1H), 4.28 –

4.01 (m, 2H), 3.84 – 3.76 (m, 1H), 2.44 (dd, J = 15.6, 2.5 Hz, 1H), 2.26 (ddd, J = 15.0,

5.0, 1.6 Hz, 1H), 2.07 – 1.94 (m, 4H), 1.75 – 1.52 (m, 4H), 1.50 (s, 3H), 1.47 – 1.39 (m, 2H), 1.34 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 176.2, 108.7, 75.9, 72.6, 72.1, 65.8, 51.1, 37.0, 34.4, 33.2, 33.1, 27.1, 24.4, 23.9; MS (EI) 299.2; HRMS (EI) calcd. for C₁₅H₂₅NO₅ 299.1733; found 299.1735; IR (cm⁻¹, neat) 3743, 3401, 1648.

(3a*R*,5*R*,7*R*,7a*S*)-5,7-dihydroxy-2,2-dimethyl-*N*-[3-(morpholin-4-yl)propyl]hexah ydro-1,3-benzodioxole-5-carboxamide (3i)

¹H NMR (300 MHz, CDCl₃) δ 8.10 (s, 1H), 4.62 – 4.45 (m, 1H), 4.11 (dd, J = 6.6, 1.7 Hz, 1H), 3.79 – 3.75 (m, 1H), 3.75 – 3.62 (m, 4H), 3.36 – 3.30 (m, 2H), 2.53 – 2.30 (m, 7H), 2.20 (dd, J = 14.9, 5.3 Hz, 1H), 1.97 (ddd, J = 14.8, 8.4, 3.0 Hz, 2H), 1.77-1.59 (m, 2H), 1.48 (s, 3H), 1.31 (s, 3H); ³C NMR (75 MHz, CDCl₃) δ 176.5, 108.6, 76.0, 72.8, 72.1, 66.8, 65.8, 57.8, 53.8, 39.3, 37.2, 34.6, 27.1, 24.9, 24.4; MS

(ESI) 359; $(M+H)^+$ HRMS (ESI) calcd. for $C_{17}H_{30}N_2O_6$ 358.2104; found 359.2184 (M+H);IR (cm⁻¹, neat) 3741, 3318, 1637.

(3aR,5R,7R,7aS)-5,7-dihydroxy-2,2-dimethyl-N-pentylhexahydro-1,3-benzodioxol

e-5-carboxamide (3j)

¹H NMR (300 MHz, CDCl₃) δ 7.00 (s, 1H), 4.62 – 4.48 (m, 1H), 4.24 – 4.01 (m, 1H), 3.81 – 3.77 (m, 1H), 3.37 – 3.13 (m, 2H), 2.41 (dd, J = 15.6, 2.5 Hz, 1H), 2.32 – 2.12 (m, 1H), 2.00 (ddd, J = 14.9, 8.4, 3.1 Hz, 2H), 1.60 – 1.40 (m, 2H), 1.48 (s, 3H), 1.33 (s, 3H), 1.40 – 1.22 (m, 4H), 0.87 (t, J = 6.8 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 176.6, 108.7, 76.1, 72.8, 72.1, 65.9, 39.4, 37.1, 34.5, 29.2, 29.0, 27.1, 24.4, 22.4, 14.0; MS (EI) 301.2; HRMS (EI) calcd. for C₁₅H₂₇NO₅ 301.1889; found 301.1897; IR (cm⁻¹, neat) 3739, 3399, 1646.

(3aR,5R,7R,7aS)-5,7-dihydroxy-N-(2-methylpropyl)hexahydrospiro[1,3-benzodio

xole-2,1'-cyclohexane]-5-carboxamide (3k)

¹H NMR (300 MHz, CDCl₃) δ 7.06 (s, 1H), 4.82 (s, 1H), 4.61 – 4.43 (m, 1H), 4.18 – 4.07 (m, 1H), 3.86 – 3.72 (m, 1H), 3.53 (s, 1H), 3.06 (t, *J* = 6.5 Hz, 2H), 2.38 (dd, *J* = 15.6, 2.5 Hz, 1H), 2.18 (ddd, *J* = 14.7, 5.6, 1.0 Hz, 1H), 2.01 (ddd, *J* = 12.1, 11.0, 3.1 Hz, 2H), 1.84 – 1.70 (m, 1H), 1.70 – 1.26 (m, 10H), 0.88 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 176.5, 109.4, 75.9, 73.1, 71.8, 66.2, 46.6, 37.2, 37.0, 34.5, 33.6, 28.5, 25.1, 24.0, 23.5, 20.0; MS (ESI) 328 (M+H); HRMS (ESI) calcd. for C₁₇H₂₉NO₅ 327.2046; found 328.2126 (M+H); IR (cm⁻¹, neat) 3741, 3401, 1648. **(3aR,5R,7R,7aS)-5,7-dihydroxy-N-[2-(pyridin-2-yl)ethyl]hexahydrospiro[1,3-ben**

zodioxole-2,1'-cyclohexane]-5-carboxamide (3l)

¹H NMR (300 MHz, CDCl₃) δ 8.52 (d, J = 4.7 Hz, 1H), 7.66 (t, J = 5.4 Hz, 1H), 7.60 (td, J = 7.7, 1.8 Hz, 1H), 7.16 – 7.11 (m, 2H), 4.87 (s, 1H), 4.56 – 4.43 (m, 1H), 4.15 – 4.06 (m, 1H), 3.81 (s, 1H), 3.73 – 3.60 (m, 2H), 3.49 (s, 1H), 3.00 (t, J = 6.5 Hz, 2H), 2.36 (dd, J = 15.6, 2.5 Hz, 1H), 2.17 (ddd, J = 14.8, 5.6, 1.2 Hz, 1H), 2.09 – 1.92 (m, 2H), 1.73 – 1.29 (m, 10H); ¹³C NMR (75 MHz, CDCl₃) δ 176.6, 159.1, 149.4, 136.7, 123.5, 121.8, 109.4, 75.9, 73.0, 71.8, 66.2, 38.7, 37.2, 37.1, 37.0, 34.4, 33.7, 25.1, 24.1, 23.6; MS (EI) 376.0; HRMS (EI) calcd. for C₂₀H₂₈N₂O₅ 376.1998; found 376.2001; IR (cm⁻¹, neat) 3737, 3338, 1648.

(3a*R*,5*R*,7*R*,7a*S*)-*N*-cyclopentyl-5,7-dihydroxyhexahydrospiro[1,3-benzodioxole-2 ,1'-cyclohexane]-5-carboxamide (3m)

¹H NMR (300 MHz, CDCl₃) δ 6.90 (d, J = 7.6 Hz, 1H), 4.83 (s, 1H), 4.60 – 4.47 (m, 1H), 4.20 – 4.02 (m, 2H), 3.81 – 3.78 (m, 1H), 3.48 (s, 1H), 2.39 (dd, J = 15.6, 2.5 Hz, 1H), 2.19 (ddd, J = 14.9, 5.4, 1.2 Hz, 1H), 2.07 – 1.84 (m, 4H), 1.76 – 1.28 (m, 16H); ¹³C NMR (75 MHz, CDCl₃) δ 176.0, 109.4, 75.8, 72.8, 71.8, 66.1, 51.0, 37.1, 37.0, 34.4, 33.6, 33.1, 33.1, 25.1, 24.1, 23.8, 23.5; MS (EI) 339.0; HRMS (EI) calcd. for C₁₈H₂₉NO₅ 339.2046; found 339.2044; IR (cm⁻¹, neat) 3743, 3401, 1644.

(3a*R*,5*R*,7*R*,7a*S*)-5,7-dihydroxy-*N*-(3-phenylpropyl)hexahydrospiro[1,3-benzodio xole-2,1'-cyclohexane]-5-carboxamide (3n)

¹H NMR (300 MHz, CDCl₃) δ 7.30 – 7.15 (m, 5H), 7.06 (t, J = 5.4 Hz, 1H), 4.80 (s, 1H), 4.62 – 4.45 (m, 1H), 4.23 – 4.06 (m, 1H), 3.86 – 3.82 (m, 1H), 3.51 (s, 1H), 3.29 (dd, J = 13.5, 6.8 Hz, 2H), 2.64 (t, J = 7.7 Hz, 2H), 2.41 (dd, J = 15.6, 2.4 Hz, 1H), 2.21 (dd, J = 14.8, 5.1 Hz, 1H), 2.03 (ddd, J = 14.6, 8.2, 3.0 Hz, 2H), 1.94 – 1.79 (m, 2H), 1.79 – 1.32 (m, 10H); ¹³C NMR (75 MHz, CDCl₃) δ 176.5, 141.2, 128.5, 128.4, 126.1, 109.4, 75.9, 73.0, 71.8, 66.2, 38.9, 37.2, 37.0, 34.4, 33.6, 33.1, 31.1, 25.1, 24.0, 23.5; MS (EI) 389.0; HRMS (EI) calcd. for C₂₂H₃₁NO₅ 389.2202; found 389.2201; IR (cm⁻¹, neat) 3743, 3401, 1646.

(3a*R*,5*R*,7*R*,7a*S*)-*N*-[2-(cyclohex-1-en-1-yl)ethyl]-5,7-dihydroxyhexahydrospiro[1, 3-benzodioxole-2,1'-cyclohexane]-5-carboxamide (30)

¹H NMR (300 MHz, CDCl₃) δ 6.96 (t, J = 5.3 Hz, 1H), 5.42 (s, 1H), 4.86 (s, 1H), 4.61 - 4.38 (m, 1H), 4.21 - 4.02 (m, 1H), 3.88 - 3.74 (m, 1H), 3.41 (d, J = 14.3 Hz, 1H), 3.38 - 3.24 (m, 2H), 2.37 (dd, J = 15.6, 2.5 Hz, 1H), 2.23 - 2.06 (m, 3H), 2.06 - 1.83 (m, 6H), 1.72 - 1.28 (m, 14H); ¹³C NMR (75 MHz, CDCl₃) δ 176.4, 134.2, 123.9, 109.4, 75.8, 72.9, 71.7, 66.1, 37.6, 37.1, 37.0, 36.9, 34.5, 33.6, 27.9, 25.3, 25.1, 24.0, 23.5, 22.9, 22.4; MS (EI) 379.0; HRMS (EI) calcd. for C₂₁H₃₃NO₅ 379.2359; found 379.2361; IR (cm⁻¹, neat) 3739, 3394, 1646. (**3a***R*,*5R*,*7R*,*7***a***S*)-*N*-(**3**,**3**-diphenylpropyl)-5,7-dihydroxyhexahydrospiro[1,3-benzo dioxole-2,1'-cyclohexane]-5-carboxamide (3p)

¹H NMR (300 MHz, CDCl₃) δ 7.29 – 7.02 (m, 10H), 6.95 (t, J = 5.7 Hz, 1H), 4.71 (s, 1H), 4.51 – 4.40 (m, 1H), 4.05 (dd, J = 6.3, 2.9 Hz, 1H), 3.86 (t, J = 7.8 Hz, 1H), 3.80 – 3.71 (m, 1H), 3.40 (s, 1H), 3.14 (dd, J = 13.9, 6.5 Hz, 2H), 2.40 – 2.05 (m, 4H), 2.01 – 1.83 (m, 2H), 1.61 – 1.32 (m, 10H); ¹³C NMR (75 MHz, CDCl₃) δ 176.5, 144.0, 128.7, 127.8, 126.5, 109.4, 75.9, 73.0, 71.8, 66.2, 49.0, 38.2, 37.2, 37.0, 35.1, 34.4, 33.6, 25.1, 24.0, 23.5; MS (EI) 465.0; HRMS (EI) calcd. for C₂₈H₃₅NO₅ 465.2515; found 465.2313; IR (cm⁻¹, neat) 3401, 1644.

(3a*R*,5*R*,7*R*,7a*S*)-5,7-dihydroxy-*N*-(3-methoxypropyl)hexahydrospiro[1,3-benzodi oxole-2,1'-cyclohexane]-5-carboxamide (3q)

¹H NMR (300 MHz, CDCl₃) δ 7.40 (s, 1H), 4.85 (s, 1H), 4.59 – 4.49 (m, 1H), 4.12 (dd, J = 6.6, 1.9 Hz, 1H), 3.81 (s, 1H), 3.49 – 3.41 (m, 2H), 3.41 – 3.34 (m, 2H), 3.32 (s, 3H), 2.40 (dd, J = 15.6, 2.2 Hz, 1H), 2.21 (dd, J = 14.9, 4.3 Hz, 1H), 2.10 – 1.95 (m, 2H), 1.84 – 1.72 (m, 2H), 1.71 – 1.32 (m, 10H); ¹³C NMR (75 MHz, CDCl₃) δ 176.5, 109.4, 75.8, 72.9, 71.7, 71.3, 66.1, 58.9, 37.8, 37.2, 37.0, 34.5, 33.6, 29.1, 25.1, 24.1, 23.6; MS (EI) 343.2; HRMS (EI) calcd. for C₁₇H₂₉NO₆ 343.1995; found 343.1990; IR (cm⁻¹, neat) 3365, 1646.

(3a*R*,5*R*,7*R*,7a*S*)-5,7-dihydroxy-*N*-(3-methylbutyl)hexahydrospiro[1,3-benzodiox ole-2,1'-cyclopentane]-5-carboxamide (3r)

¹H NMR (300 MHz, CDCl₃) δ 6.95 (s, 1H), 4.84 (s, 1H), 4.41 (s, 1H), 4.07 (s, 1H), 3.80 (s, 1H), 3.39 (s, 1H), 3.27 (d, *J* = 7.1 Hz, 2H), 2.42 (d, *J* = 15.5 Hz, 1H), 2.29 – 2.13 (m, 1H), 2.11 – 1.51 (m, 11H), 1.48 – 1.34 (m, 2H), 0.91 (d, *J* = 6.4 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃)

δ 176.4, 118.8, 75.9, 73.1, 72.6, 66.0, 38.3, 37.8, 37.2, 36.7, 36.2, 34.4, 26.0, 24.1, 23.2, 22.5; MS (EI) 327.0; HRMS (EI) calcd. for C₁₇H₂₉NO₅ 327.2046; found 327.2048; IR (cm⁻¹, neat) 3401, 1646.

(3a*R*,5*R*,7*R*,7a*S*)-5,7-dihydroxy-*N*-(3-methoxypropyl)hexahydrospiro[1,3-benzodi oxole-2,1'-cyclopentane]-5-carboxamide (3s)

¹H NMR (300 MHz, CDCl₃) δ 7.41 (s, 1H), 4.86 (d, *J* = 3.1 Hz, 1H), 4.45 – 4.39 (m, 1H), 4.06 (dd, *J* = 6.6, 3.0 Hz, 1H), 3.80 (d, *J* = 2.3 Hz, 1H), 3.45 (t, *J* = 5.8 Hz, 2H), 3.40 – 3.34 (m, 2H), 3.32 (s, 1H), 2.41 (dd, *J* = 15.6, 2.2 Hz, 1H), 2.21 (dd, *J* = 14.8, 5.6 Hz, 1H), 2.09 – 1.91 (m, 3H), 1.90 – 1.59 (m, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 176.4, 118.8, 76.0, 73.1, 72.6, 71.3, 66.0, 58.9, 37.8, 37.3, 36.7, 36.2, 34.4, 29.1, 24.0, 23.2; MS (EI) 329.2; HRMS (EI) calcd. for C₁₆H₂₇NO₆ 329.1838; found 329.1829; IR (cm⁻¹, neat) 3725, 3363, 1648.

(3a*R*,5*R*,7*R*,7a*S*)-5,7-dihydroxy-*N*-(pyridin-2-ylmethyl)hexahydrospiro[1,3-benzo dioxole-2,1'-cyclopentane]-5-carboxamide (3t)

¹H NMR (300 MHz, CDCl₃) δ 8.53 (d, J = 4.6 Hz, 1H), 8.09 (s, 1H), 7.65 (td, J = 7.7, 1.7 Hz, 1H), 7.34 – 7.11 (m, 2H), 4.76 (s, 1H), 4.59 – 4.53 (m, 2H), 4.43 – 4.39 (m, 1H), 4.06 (dd, J = 6.3, 3.9 Hz, 1H), 3.88 – 3.83 (m, 1H), 3.69 (s, 1H), 2.43 (dd, J =15.6, 2.7 Hz, 1H), 2.22 (dd, J = 14.7, 6.4 Hz, 1H), 2.08 (ddd, J = 14.7, 13.6, 2.7 Hz, 2H), 2.00 – 1.57 (m, 8H); ¹³C NMR (75 MHz, CDCl₃) δ 176.5, 156.2, 149.3, 137.0, 122.6, 122.0, 118.8, 76.5, 73.6, 72.9, 66.3, 44.4, 37.6, 36.8, 36.4, 34.4, 24.0, 23.2;MS (EI) 348.2; HRMS (EI) calcd. for C₁₈H₂₄N₂O₅ 348.1685; found 348.1695; IR (cm⁻¹, neat) 3390, 1656.

#9 06-Mar-12 REG : 01:49.9 LIST: hei1436-c1 Start : 07:06:19 902 Samp: 1315leeutd01 Mode: EI +VE +LMR ESCAN (EXP) UP HR NRM Inlet : Oper: Limt: (0) : (419) C25.H25.N.O5 Peak: 1000.00 mmu R+D: -2.0 > 60.0 Data: +/322>460 (CMASS : converted |CMASS : converted |CMASS : conve (mmu) 0 Flags Delta R+D Composition %RA Intensity Mass 52.24 # 0.4 7.0 C18.H25.N.O5 543952 335.1729

ų.

05-Mar-12 REG : 01:49.1 #9 LIST: hei1435-c2 Start : 23:33:50 839 Samp: 1316leeutd02 Mode: EI +VE +LMR ESCAN (EXP) UP HR NRM Inlet : Oper: Limt: (0) a a 1 : (474) C28.H28.N.O6 R+D: -2.0 > 60.0 Peak: 1000.00 mmu Data: +/344>441 (CMASS : converted; CMASS : converted | CMASS : conve (mmu) 0 Composition %RA Flags Delta R+D Intensity Mass

301.1887 646232 100.00 # 0.3 3.0 C15.H27.N.05

HO NH ΌΗ 3b

05-Mar-12 REG : 04:32.7 #9 LIST: hei1434-c3 Start : 23:19:22 1045 Samp: 1317leeutd03 Mode: EI +VE +LMR ESCAN (EXP) UP HR NRM Inlet : Oper: Limt: (0) . . . : (456) C25.H30.N.O7 Peak: 1000.00 mmu R+D: -2.0 > 60.0 Data: +/860>1019 (CMASS : converted; CMASS : converted; CMASS : conv (mmu) 0 R+D Composition %RA Flags Delta Intensity Mass C14.H25.N.O6 -0.5 3.0 18.41 # 46831 303.1687

HONH 3c

05-Mar-12 REG : 02:32.7 #9 LIST: hei1433-c1 Start : 22:37:30 595 Samp: 1310leeutD04 Mode: EI +VE +LMR ESCAN (EXP) UP HR NRM Inlet : Oper: Limt: (0) . . : (456) C25.H30.N.O7 Peak: 1000.00 mmu R+D: -2.0 > 60.0 Data: +/453>552 (CMASS : converted | CMASS : converted | CMASS : conve (mmu) 0 Flags Delta R+D Composition Intensity %RA Mass 1596276 100.00 # 0.8 3.0 C14.H25.N.O5 287.1725

но Ули 3d

05-Mar-12 REG : 01:07.9 #9 LIST: hei1432-c2 Start : 22:18:12 637 Samp: 1319leeutD05 Mode: EI +VE +LMR ESCAN (EXP) UP HR NRM Inlet : Oper: Limt: (0) : (456) C25.H30.N.O7 Peak: 1000.00 mmu R+D: -2.0 > 60.0 Data: +/197>307 (CMASS : converted; CMASS : converted |CMASS : conve (mmu) 0 %RA Flags Delta R+D Composition Intensity Mass 287.1726 2544634 100.00 # 0.7 3.0 C14.H25.N.O5

HONH 3e

05-Mar-12 REG : 01:13.4 #9 LIST: hei1430-c4 Start : 21:13:32 2832 Samp: 1320leeutD6 Mode: EI +VE +LMR ESCAN (EXP) UP HR NRM Inlet : Oper: Limt; (0) : (440) C25.H30.N.O6 R+D: -2.0 > 60.0Peak: 1000.00 mmu Data: +/217>499 (CMASS : converted |CMASS : converted |CMASS : conve (mmu) 0. %RA Flags Delta R+D Composition Intensity Mass -0.9 5.0 C18.H29.N.O5 7855517 100.00 # 339.2055

[Elemental Composition]
Data : 1000512-010 Date : 12-May-2011 11:39
Sample: Leeut-D07
Note : 425.52
Inlet : Direct Ion Mode : EI+
RT : 0.52 min Scan#: 34
Elements : C 25/0, H 36/0, N 1/0, O 5/0
Mass Tolerance : 10ppm, 3mmu if m/z < 300, 20mmu if m/z > 2000
Unsaturation (U.S.) : -0.5 - 200.0
Observed m/z Int% Err[ppm / mmu] U.S. Composition
425.2202 100.0 -0.1 / +0.0 11.0 C 25 H 31 N O 5

Page: 1

05-Mar-12 REG : 02:10.7 #9 LIST: hei1428-c1 Start : 20:43:59 2166 Samp: 13211eeutd08 Mode: EI +VE +LMR ESCAN (EXP) UP HR NRM Inlet : Oper: Limt: (0) : (435) C25.H25.N.O6 Peak: 1000.00 mmu R+D: -2.0 > 60.0 Data: +/402>681 (CMASS : converted |CMASS : converted |CMASS : conve (mmu) 0 R+D Composition %RA Flags Delta Intensity Mass 4.0 C15.H25.N.O5 -0.3 916654 100.00 # _

299.1735

но 3h

/d=/Data/yu/1322/2/pdata/1 Administrator Wed May 25 15:19:57 2011

/d=/Data/yu/1322/1/pdata/1 Administrator Wed May 25 15:21:28 2011

05-Mar-12 REG : 00:54.6 #9 LIST: hei1424-c2 Start : 19:31:20 814 Samp: 1323leeutd10 Mode: EI +VE +LMR ESCAN (EXP) UP HR NRM Inlet : Oper: Limt: (0) . . : (371) C19.H33.N.O6 Peak: 1000.00 mmu R+D: -2.0 > 60.0 Data: +/163>287 (CMASS : converted |CMASS : converted |CMASS : conve (mmu) 0 Flags Delta R+D Composition %RA Intensity Mass 1013276 100.00 # -0.7 3.0 C15.H27.N.O5 301.1897

но Х 3j

/d=/Data/yu/1324/1/pdata/1 Administrator Wed May 25 15:30:32 2011

/d=/Data/yu/1324/2/pdata/1 Administrator Wed May 25 15:29:56 2011


```
[ Elemental Composition ]
                                   Date : 31-May-2011 17:22
Data : 201105148
Sample: leeut D-12
Note : -
                                   Ion Mode : EI+
Inlet : Direct
                                   Scan#: 17
RT : 0.40 min
Elements : C 20/0, H 32/4, O 5/0, N 2/0, Cl 1/0
Mass Tolerance : 1000ppm, 3mmu if m/z < 3, 5mmu if m/z > 5
Unsaturation (U.S.) : -0.1 - 36.0
                   Err [ppm / mmu] U.S. Composition
Observed m/z Int%
                  +0.8 / +0.3 8.0 C 20 H 28 O 5 N 2
  376.2001 100.0
```


[Elemental Composition]
Data : 201105150 Date : 31-May-2011 17:29
Sample: leeut D-13
Note : Inlet : Direct Ion Mode : EI+
RT : 0.77 min Scan#: 29
Elements : C 18/0, H 29/4, O 5/0, N 2/0, Cl 1/0
Mass Tolerance : 1000ppm, 3mmu if m/z < 3, 5mmu if m/z > 5
Unsaturation (U.S.) : -0.1 - 36.0
Observed m/z Int% Err[ppm / mmu] U.S. Composition
339.2044 3.5 -0.6 / -0.2 5.0 C 18 H 29 O 5 N

3n

[Elemental Composition]
Data : 201105151 Date : 31-May-2011 17:38
Sample: leeut D-14
Note : Inlet : Direct Ion Mode : EI+
RT : 0.05 min Scan#: 3
Elements : C 23/0, H 31/4, O 5/0, N 2/0, Cl 1/0
Mass Tolerance : 1000ppm, 3mmu if m/z < 3, 5mmu if m/z > 5
Unsaturation (U.S.) : -0.1 - 36.0
Observed m/z Int% Err[ppm / mmu] U.S. Composition
389.2201 100.0 -0.4 / -0.2 8.0 C 22 H 31 O 5 N

3n


```
[ Elemental Composition ]
Data : 201105152 Date : 01-Jun-2011 10:39
Sample: leeut D-15
Note : -
Inlet : Direct Ion Mode : EI+
RT : 1.59 min Scan#: 70
Elements : C 23/0, H 33/4, O 5/0, N 2/0, Cl 1/0
Mass Tolerance : 1000ppm, 3mmu if m/z < 3, 5mmu if m/z > 5
Unsaturation (U.S.) : -0.1 - 36.0
Observed m/z Int% Err[ppm / mmu] U.S. Composition
379.2361 100.0 +0.6 / +0.2 6.0 C 21 H 33 O 5 N
```


Page: 1

29-Sep-11 REG : 01:36.0 #9 LIST: hei2529(leeutd17)-c1 Start : 14:34:59 793 Mode: EI +VE +LMR ESCAN (EXP) UP HR NRM Samp: Inlet : Oper: Limt: (0) : (398) C19.H44.N.O7 R+D: -2.0 > 60.0 Data: +/295>407 (CMASS : converted |CMASS : converted |CMASS : conve (mmu) 2 %RA Flags Delta R+D Composition Intensity 0.5 4.0 C17.H29.N.O6 Mass # 11539 100.00 343.1990

[Elemental Composition]
Data : 201105157 Date : 01-Jun-2011 15:11
Sample: leeut D-18
Note : Inlet : Direct Ion Mode : EI+
RT : 0.46 min Scan#: 17
Elements : C 17/0, H 29/4, O 5/0, N 2/0, Cl 1/0
Mass Tolerance : 1000ppm, 3mmu if m/z < 3, 5mmu if m/z > 5
Unsaturation (U.S.) : -0.1 - 36.0
Observed m/z Int% Err[ppm / mmu] U.S. Composition
327.2048 100.0 +0.6 / +0.2 4.0 C 17 H 29 O 5 N

Page: 1

05-Mar-12 REG : 05:38.3 #9 LIST: hei1422-c3 Start : 18:51:48 2225 Samp: 1333leeutd19 Mode: EI +VE +LMR ESCAN (EXP) UP HR NRM Inlet : Oper: Limt: (0) : (371) C19.H33.N.O6 R+D: -2.0 > 60.0 Peak: 1000.00 mmu Data: +/1013>1340 (CMASS : converted |CMASS : converted |CMASS : con (mmu) 0 Composition Flags Delta R+D %RA Intensity Mass C16.H27.N.O6 0.9 4.0 # 89.13 $4887\bar{2}$ 329.1829

29-Sep-11 REG : 04:03.6 #9 LIST: hei2527(leeutd20)-c1 Start : 14:01:18 1153 Samp: Mode: EI +VE +LMR ESCAN (EXP) UP HR NRM Inlet : Oper: Limt: (0) . : (392) C20.H44.N2.O5 Peak: 1000.00 mmu R+D: -2.0 > 60.0 Data: +/752>944 (CMASS : converted |CMASS : converted |CMASS : conve (mmu) 35 %RA Flags Delta R+D Composition Intensity 100.00 # -1.0 8.0 C18.H24.N2.05 Mass 171096 348.1695

ORTEP representation of compound 3k (cyn 1324)

CCDC number 844606

Table 1. Crystal data and structure refinement	for 101129LTB.	
Identification code	101129ltb	
Empirical formula	C17 H29 N O5	
Formula weight	327.41	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P 1	
Unit cell dimensions	a = 11.0822(7) Å	$\alpha = 96.815(4)^{\circ}$.
	b = 11.5824(7) Å	$\beta = 99.359(4)^{\circ}$.
	c = 15.3798(14) Å	$\gamma = 115.128(3)^{\circ}$.
Volume	1724.1(2) Å ³	
Z	4	
Density (calculated)	1.261 Mg/m ³	
Absorption coefficient	0.092 mm ⁻¹	
F(000)	712	
Crystal size	0.22 x 0.20 x 0.12 mm ³	
Theta range for data collection	1.37 to 26.47°.	
Index ranges	-13<=h<=13, -14<=k<=13, -18<=l<=19	
Reflections collected	28034	
Independent reflections	12032 [R(int) = 0.1095]	
Completeness to theta = 26.47°	98.3 %	
Absorption correction	Semi-empirical from equivaler	nts
Max. and min. transmission	0.9486 and 0.7706	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	12032 / 3 / 846	
Goodness-of-fit on F ²	1.069	
Final R indices [I>2sigma(I)]	R1 = 0.0599, wR2 = 0.1379	
R indices (all data)	R1 = 0.0777, wR2 = 0.1859	
Absolute structure parameter	-1.5(9)	
Extinction coefficient	0.066(4)	
Largest diff. peak and hole	0.565 and -0.510 e.Å ⁻³	

Table 2. Atomic coordinates ($x\ 10^4$) and equivalent isotropic displacement parameters (Å $^2x\ 10^3$)

	X	У	Z	U(eq)
C(1)	5940(5)	9670(5)	4630(3)	32(1)
C(2)	4743(5)	8262(5)	4415(3)	26(1)
C(3)	4876(5)	7417(4)	3631(3)	23(1)
C(4)	4929(4)	8016(4)	2788(3)	17(1)
C(5)	6112(5)	9420(4)	3006(3)	24(1)
C(6)	6000(5)	10266(4)	3791(3)	26(1)
C(7)	3756(4)	6466(4)	1478(3)	16(1)
C(8)	3830(4)	6003(4)	532(3)	14(1)
C(9)	4112(4)	6999(4)	-77(3)	16(1)
C(10)	3229(4)	7705(4)	1(3)	17(1)
C(11)	3370(4)	8329(4)	955(3)	16(1)
C(12)	3070(4)	7367(4)	1570(3)	15(1)
C(13)	3662(4)	6295(4)	-1079(3)	14(1)
C(14)	4279(4)	6291(4)	-2540(3)	17(1)
C(15)	3972(5)	7208(4)	-3078(3)	21(1)
C(16)	2612(5)	7159(5)	-3019(3)	33(1)
C(17)	5122(5)	8591(4)	-2788(3)	27(1)
C(18)	9524(4)	3288(4)	2675(3)	21(1)
C(19)	10068(5)	2844(5)	3478(3)	26(1)
C(20)	11421(5)	3897(5)	4037(3)	31(1)
C(21)	11330(5)	5149(5)	4327(3)	30(1)
C(22)	10809(5)	5586(5)	3533(3)	31(1)
C(23)	9453(5)	4532(5)	2969(3)	28(1)
C(24)	8364(5)	1529(4)	1425(3)	21(1)
C(25)	7460(4)	1539(4)	556(3)	18(1)
C(26)	8196(4)	2769(4)	222(3)	18(1)
C(27)	9569(4)	2996(4)	11(3)	16(1)
C(28)	10267(4)	2341(4)	589(3)	19(1)
C(29)	9905(4)	2209(4)	1487(3)	19(1)
C(30)	9362(4)	2391(4)	-973(3)	16(1)
C(31)	10027(4)	2717(4)	-2421(3)	17(1)
C(32)	9193(5)	3166(4)	-3049(3)	23(1)

for 101129LTB. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(33)	7692(5)	2547(5)	-2986(3)	31(1)
C(34)	9327(6)	2883(5)	-4012(3)	32(1)
C(35)	5652(5)	4649(5)	4627(3)	29(1)
C(36)	6908(5)	4440(5)	4961(3)	28(1)
C(37)	8164(5)	5693(5)	5415(3)	24(1)
C(38)	7869(5)	6455(4)	6167(3)	22(1)
C(39)	6621(5)	6668(4)	5830(3)	22(1)
C(40)	5348(5)	5387(5)	5372(3)	25(1)
C(41)	9594(4)	7760(4)	7472(3)	17(1)
C(42)	9140(4)	8542(4)	8105(3)	15(1)
C(43)	9409(4)	8304(4)	9056(3)	16(1)
C(44)	8498(4)	6878(4)	9056(3)	15(1)
C(45)	8845(5)	5990(4)	8429(3)	18(1)
C(46)	8969(4)	6312(4)	7508(3)	18(1)
C(47)	8780(4)	6664(4)	10025(3)	16(1)
C(48)	7996(5)	6510(4)	11420(3)	22(1)
C(49)	8305(5)	7735(5)	12077(3)	22(1)
C(50)	8317(5)	7421(5)	13014(3)	29(1)
C(51)	9647(5)	8849(5)	12050(3)	34(1)
C(52)	1571(5)	452(5)	4508(3)	33(1)
C(53)	847(5)	715(5)	5203(3)	29(1)
C(54)	1205(5)	259(5)	6065(3)	25(1)
C(55)	2728(5)	858(4)	6449(3)	18(1)
C(56)	3473(5)	629(5)	5752(3)	25(1)
C(57)	3131(5)	1095(5)	4903(3)	33(1)
C(58)	4335(4)	1310(4)	7729(3)	18(1)
C(59)	4513(5)	1250(4)	8712(3)	18(1)
C(60)	3620(4)	1645(4)	9221(3)	15(1)
C(61)	3217(4)	2623(4)	8790(3)	16(1)
C(62)	4258(4)	3460(4)	8302(3)	20(1)
C(63)	4395(4)	2602(4)	7523(3)	19(1)
C(64)	4458(4)	2267(4)	10190(3)	16(1)
C(65)	4951(5)	2018(4)	11746(3)	20(1)
C(66)	4337(4)	2571(4)	12401(3)	20(1)
C(67)	2935(5)	1541(5)	12467(3)	25(1)
C(68)	4225(5)	3769(4)	12174(3)	26(1)
N(1)	4574(4)	6747(3)	-1569(2)	16(1)
N(2)	10107(4)	3129(3)	-1469(2)	17(1)

N(3)	7880(4)	6681(3)	10490(2)	18(1)
N(4)	4140(4)	1580(3)	10813(2)	17(1)
O(1)	5101(3)	7275(3)	2061(2)	19(1)
O(2)	3618(3)	8011(3)	2500(2)	18(1)
O(3)	5559(3)	7852(3)	179(2)	18(1)
O(4)	2494(3)	8947(3)	973(2)	19(1)
O(5)	2477(3)	5427(3)	-1392(2)	22(1)
O(6)	8206(3)	2299(3)	2174(2)	26(1)
O(7)	10369(3)	3478(3)	2044(2)	20(1)
O(8)	7039(3)	366(3)	-89(2)	23(1)
O(9)	10505(3)	4359(3)	185(2)	18(1)
O(10)	8532(3)	1210(3)	-1280(2)	20(1)
O(11)	7640(3)	5800(3)	6899(2)	19(1)
O(12)	9049(3)	7698(3)	6541(2)	22(1)
O(13)	9925(3)	9884(3)	8097(2)	19(1)
O(14)	7134(3)	6683(3)	8771(2)	18(1)
O(15)	9804(3)	6515(3)	10326(2)	22(1)
O(16)	3006(3)	373(3)	7225(2)	21(1)
O(17)	3233(3)	2235(3)	6784(2)	22(1)
O(18)	2415(3)	540(3)	9262(2)	25(1)
O(19)	5582(3)	4249(3)	8877(2)	30(1)
O(20)	5456(3)	3397(3)	10364(2)	23(1)

C(1)-C(6)	1.533(7)
C(1)-C(2)	1.556(7)
C(1)-H(1A)	0.9900
C(1)-H(1B)	0.9900
C(2)-C(3)	1.528(7)
C(2)-H(2A)	0.9900
C(2)-H(2B)	0.9900
C(3)-C(4)	1.538(6)
C(3)-H(3A)	0.9900
C(3)-H(3B)	0.9900
C(4)-O(1)	1.416(5)
C(4)-O(2)	1.446(5)
C(4)-C(5)	1.547(6)
C(5)-C(6)	1.518(6)
C(5)-H(5A)	0.9900
C(5)-H(5B)	0.9900
C(6)-H(6A)	0.9900
C(6)-H(6B)	0.9900
C(7)-O(1)	1.444(5)
C(7)-C(8)	1.516(6)
C(7)-C(12)	1.536(6)
C(7)-H(7)	1.0000
C(8)-C(9)	1.534(5)
C(8)-H(8A)	0.9900
C(8)-H(8B)	0.9900
C(9)-O(3)	1.435(5)
C(9)-C(10)	1.527(6)
C(9)-C(13)	1.549(6)
C(10)-C(11)	1.510(6)
C(10)-H(10A)	0.9900
C(10)-H(10B)	0.9900
C(11)-O(4)	1.432(5)
C(11)-C(12)	1.512(5)
C(11)-H(11)	1.0000
C(12)-O(2)	1.431(5)
C(12)-H(12)	1.0000

Table 3. Bond lengths [Å] and angles [°] for 101129LTB.

C(13)-O(5)	1.235(5)
C(13)-N(1)	1.324(5)
C(14)-N(1)	1.458(5)
C(14)-C(15)	1.533(5)
C(14)-H(14A)	0.9900
C(14)-H(14B)	0.9900
C(15)-C(16)	1.501(7)
C(15)-C(17)	1.517(6)
C(15)-H(15)	1.0000
C(16)-H(16A)	0.9800
C(16)-H(16B)	0.9800
C(16)-H(16C)	0.9800
C(17)-H(17A)	0.9800
C(17)-H(17B)	0.9800
C(17)-H(17C)	0.9800
C(18)-O(7)	1.428(5)
C(18)-O(6)	1.430(5)
C(18)-C(23)	1.497(7)
C(18)-C(19)	1.525(6)
C(19)-C(20)	1.502(7)
C(19)-H(19A)	0.9900
C(19)-H(19B)	0.9900
C(20)-C(21)	1.515(7)
C(20)-H(20A)	0.9900
C(20)-H(20B)	0.9900
C(21)-C(22)	1.498(7)
C(21)-H(21A)	0.9900
C(21)-H(21B)	0.9900
C(22)-C(23)	1.506(7)
C(22)-H(22A)	0.9900
C(22)-H(22B)	0.9900
C(23)-H(23A)	0.9900
C(23)-H(23B)	0.9900
C(24)-O(6)	1.451(5)
C(24)-C(29)	1.527(6)
C(24)-C(25)	1.539(6)
C(24)-H(24)	1.0000
C(25)-O(8)	1.428(5)

C(25)-C(26)	1.511(5)
C(25)-H(25)	1.0000
C(26)-C(27)	1.526(6)
C(26)-H(26A)	0.9900
C(26)-H(26B)	0.9900
C(27)-O(9)	1.435(5)
C(27)-C(30)	1.528(6)
C(27)-C(28)	1.550(6)
C(28)-C(29)	1.507(6)
C(28)-H(28A)	0.9900
C(28)-H(28B)	0.9900
C(29)-O(7)	1.440(5)
C(29)-H(29)	1.0000
C(30)-O(10)	1.255(5)
C(30)-N(2)	1.324(5)
C(31)-N(2)	1.461(5)
C(31)-C(32)	1.516(6)
C(31)-H(31A)	0.9900
C(31)-H(31B)	0.9900
C(32)-C(34)	1.524(7)
C(32)-C(33)	1.532(7)
C(32)-H(32)	1.0000
C(33)-H(33A)	0.9800
C(33)-H(33B)	0.9800
C(33)-H(33C)	0.9800
C(34)-H(34A)	0.9800
C(34)-H(34B)	0.9800
C(34)-H(34C)	0.9800
C(35)-C(40)	1.516(7)
C(35)-C(36)	1.530(7)
C(35)-H(35A)	0.9900
C(35)-H(35B)	0.9900
C(36)-C(37)	1.503(7)
C(36)-H(36A)	0.9900
C(36)-H(36B)	0.9900
C(37)-C(38)	1.533(6)
C(37)-H(37A)	0.9900
C(37)-H(37B)	0.9900

C(38)-O(11)	1.428(5)
C(38)-O(12)	1.440(5)
C(38)-C(39)	1.526(7)
C(39)-C(40)	1.529(6)
C(39)-H(39A)	0.9900
C(39)-H(39B)	0.9900
C(40)-H(40A)	0.9900
C(40)-H(40B)	0.9900
C(41)-O(12)	1.441(5)
C(41)-C(46)	1.531(6)
C(41)-C(42)	1.536(6)
C(41)-H(41)	1.0000
C(42)-O(13)	1.427(4)
C(42)-C(43)	1.526(5)
C(42)-H(42)	1.0000
C(43)-C(44)	1.527(5)
C(43)-H(43A)	0.9900
C(43)-H(43B)	0.9900
C(44)-O(14)	1.414(5)
C(44)-C(45)	1.536(6)
C(44)-C(47)	1.544(6)
C(45)-C(46)	1.520(6)
C(45)-H(45A)	0.9900
C(45)-H(45B)	0.9900
C(46)-O(11)	1.441(5)
C(46)-H(46)	1.0000
C(47)-O(15)	1.243(5)
C(47)-N(3)	1.322(5)
C(48)-N(3)	1.460(5)
C(48)-C(49)	1.513(6)
C(48)-H(48A)	0.9900
C(48)-H(48B)	0.9900
C(49)-C(51)	1.510(7)
C(49)-C(50)	1.526(6)
C(49)-H(49)	1.0000
C(50)-H(50A)	0.9800
C(50)-H(50B)	0.9800
C(50)-H(50C)	0.9800

C(51)-H(51A)	0.9800
C(51)-H(51B)	0.9800
C(51)-H(51C)	0.9800
C(52)-C(53)	1.513(7)
C(52)-C(57)	1.539(7)
C(52)-H(52A)	0.9900
C(52)-H(52B)	0.9900
C(53)-C(54)	1.539(6)
C(53)-H(53A)	0.9900
C(53)-H(53B)	0.9900
C(54)-C(55)	1.504(6)
C(54)-H(54A)	0.9900
C(54)-H(54B)	0.9900
C(55)-O(16)	1.421(5)
C(55)-O(17)	1.441(5)
C(55)-C(56)	1.520(6)
C(56)-C(57)	1.524(7)
C(56)-H(56A)	0.9900
C(56)-H(56B)	0.9900
C(57)-H(57A)	0.9900
C(57)-H(57B)	0.9900
C(58)-O(16)	1.421(5)
C(58)-C(59)	1.506(6)
C(58)-C(63)	1.544(6)
C(58)-H(58)	1.0000
C(59)-C(60)	1.534(6)
C(59)-H(59A)	0.9900
C(59)-H(59B)	0.9900
C(60)-O(18)	1.422(5)
C(60)-C(64)	1.526(6)
C(60)-C(61)	1.560(6)
C(61)-C(62)	1.529(6)
C(61)-H(61A)	0.9900
C(61)-H(61B)	0.9900
C(62)-O(19)	1.421(5)
C(62)-C(63)	1.533(6)
C(62)-H(62)	1.0000
C(63)-O(17)	1.439(5)

C(63)-H(63)	1.0000
C(64)-O(20)	1.264(5)
C(64)-N(4)	1.315(5)
C(65)-N(4)	1.465(5)
C(65)-C(66)	1.525(6)
C(65)-H(65A)	0.9900
C(65)-H(65B)	0.9900
C(66)-C(68)	1.520(6)
C(66)-C(67)	1.534(6)
C(66)-H(66)	1.0000
C(67)-H(67A)	0.9800
C(67)-H(67B)	0.9800
C(67)-H(67C)	0.9800
C(68)-H(68A)	0.9800
C(68)-H(68B)	0.9800
C(68)-H(68C)	0.9800
N(1)-H(1N)	0.8800
N(2)-H(2N)	0.8800
N(3)-H(3N)	0.8800
N(4)-H(4N)	0.8800
O(3)-H(3)	0.8400
O(4)-H(4)	0.8400
O(8)-H(8)	0.8400
O(9)-H(9)	0.8400
O(13)-H(13)	0.8400
O(14)-H(14)	0.8400
O(18)-H(18)	0.8400
O(19)-H(19)	0.8400
C(6)-C(1)-C(2)	110.9(4)
C(6)-C(1)-H(1A)	109.5
C(2)-C(1)-H(1A)	109.5
C(6)-C(1)-H(1B)	109.5
C(2)-C(1)-H(1B)	109.5
H(1A)-C(1)-H(1B)	108.0
C(3)-C(2)-C(1)	110.3(4)
C(3)-C(2)-H(2A)	109.6
C(1)-C(2)-H(2A)	109.6

C(3)-C(2)-H(2B)	109.6
C(1)-C(2)-H(2B)	109.6
H(2A)-C(2)-H(2B)	108.1
C(2)-C(3)-C(4)	111.6(4)
C(2)-C(3)-H(3A)	109.3
C(4)-C(3)-H(3A)	109.3
C(2)-C(3)-H(3B)	109.3
C(4)-C(3)-H(3B)	109.3
H(3A)-C(3)-H(3B)	108.0
O(1)-C(4)-O(2)	107.1(3)
O(1)-C(4)-C(3)	112.7(3)
O(2)-C(4)-C(3)	106.9(3)
O(1)-C(4)-C(5)	108.5(3)
O(2)-C(4)-C(5)	110.8(3)
C(3)-C(4)-C(5)	110.7(3)
C(6)-C(5)-C(4)	111.3(4)
C(6)-C(5)-H(5A)	109.4
C(4)-C(5)-H(5A)	109.4
C(6)-C(5)-H(5B)	109.4
C(4)-C(5)-H(5B)	109.4
H(5A)-C(5)-H(5B)	108.0
C(5)-C(6)-C(1)	111.9(4)
C(5)-C(6)-H(6A)	109.2
C(1)-C(6)-H(6A)	109.2
C(5)-C(6)-H(6B)	109.2
C(1)-C(6)-H(6B)	109.2
H(6A)-C(6)-H(6B)	107.9
O(1)-C(7)-C(8)	112.0(3)
O(1)-C(7)-C(12)	101.3(3)
C(8)-C(7)-C(12)	116.3(3)
O(1)-C(7)-H(7)	109.0
C(8)-C(7)-H(7)	109.0
C(12)-C(7)-H(7)	109.0
C(7)-C(8)-C(9)	116.2(3)
C(7)-C(8)-H(8A)	108.2
C(9)-C(8)-H(8A)	108.2
C(7)-C(8)-H(8B)	108.2
C(9)-C(8)-H(8B)	108.2

H(8A)-C(8)-H(8B)	107.4
O(3)-C(9)-C(10)	113.7(3)
O(3)-C(9)-C(8)	106.8(3)
C(10)-C(9)-C(8)	110.4(3)
O(3)-C(9)-C(13)	111.0(3)
C(10)-C(9)-C(13)	104.8(3)
C(8)-C(9)-C(13)	110.3(3)
C(11)-C(10)-C(9)	114.0(3)
C(11)-C(10)-H(10A)	108.8
C(9)-C(10)-H(10A)	108.8
C(11)-C(10)-H(10B)	108.8
C(9)-C(10)-H(10B)	108.8
H(10A)-C(10)-H(10B)	107.6
O(4)-C(11)-C(10)	110.6(3)
O(4)-C(11)-C(12)	109.8(3)
C(10)-C(11)-C(12)	112.5(3)
O(4)-C(11)-H(11)	107.9
C(10)-C(11)-H(11)	107.9
C(12)-C(11)-H(11)	107.9
O(2)-C(12)-C(11)	111.7(3)
O(2)-C(12)-C(7)	102.2(3)
C(11)-C(12)-C(7)	114.4(3)
O(2)-C(12)-H(12)	109.4
C(11)-C(12)-H(12)	109.4
C(7)-C(12)-H(12)	109.4
O(5)-C(13)-N(1)	123.8(4)
O(5)-C(13)-C(9)	119.7(3)
N(1)-C(13)-C(9)	116.2(3)
N(1)-C(14)-C(15)	112.8(3)
N(1)-C(14)-H(14A)	109.0
C(15)-C(14)-H(14A)	109.0
N(1)-C(14)-H(14B)	109.0
C(15)-C(14)-H(14B)	109.0
H(14A)-C(14)-H(14B)	107.8
C(16)-C(15)-C(17)	111.6(4)
C(16)-C(15)-C(14)	111.2(4)
C(17)-C(15)-C(14)	111.5(4)
C(16)-C(15)-H(15)	107.4

C(17)-C(15)-H(15)	107.4
C(14)-C(15)-H(15)	107.4
C(15)-C(16)-H(16A)	109.5
C(15)-C(16)-H(16B)	109.5
H(16A)-C(16)-H(16B)	109.5
C(15)-C(16)-H(16C)	109.5
H(16A)-C(16)-H(16C)	109.5
H(16B)-C(16)-H(16C)	109.5
C(15)-C(17)-H(17A)	109.5
C(15)-C(17)-H(17B)	109.5
H(17A)-C(17)-H(17B)	109.5
C(15)-C(17)-H(17C)	109.5
H(17A)-C(17)-H(17C)	109.5
H(17B)-C(17)-H(17C)	109.5
O(7)-C(18)-O(6)	104.3(3)
O(7)-C(18)-C(23)	108.8(4)
O(6)-C(18)-C(23)	110.2(4)
O(7)-C(18)-C(19)	111.1(4)
O(6)-C(18)-C(19)	110.9(3)
C(23)-C(18)-C(19)	111.3(4)
C(20)-C(19)-C(18)	111.6(4)
C(20)-C(19)-H(19A)	109.3
C(18)-C(19)-H(19A)	109.3
C(20)-C(19)-H(19B)	109.3
C(18)-C(19)-H(19B)	109.3
H(19A)-C(19)-H(19B)	108.0
C(19)-C(20)-C(21)	111.2(4)
C(19)-C(20)-H(20A)	109.4
C(21)-C(20)-H(20A)	109.4
C(19)-C(20)-H(20B)	109.4
C(21)-C(20)-H(20B)	109.4
H(20A)-C(20)-H(20B)	108.0
C(22)-C(21)-C(20)	111.4(4)
C(22)-C(21)-H(21A)	109.3
C(20)-C(21)-H(21A)	109.3
C(22)-C(21)-H(21B)	109.3
C(20)-C(21)-H(21B)	109.3
H(21A)-C(21)-H(21B)	108.0
C(21)-C(22)-C(23)	111.5(4)
---------------------	----------
C(21)-C(22)-H(22A)	109.3
C(23)-C(22)-H(22A)	109.3
C(21)-C(22)-H(22B)	109.3
C(23)-C(22)-H(22B)	109.3
H(22A)-C(22)-H(22B)	108.0
C(18)-C(23)-C(22)	111.9(4)
C(18)-C(23)-H(23A)	109.2
C(22)-C(23)-H(23A)	109.2
C(18)-C(23)-H(23B)	109.2
C(22)-C(23)-H(23B)	109.2
H(23A)-C(23)-H(23B)	107.9
O(6)-C(24)-C(29)	103.3(3)
O(6)-C(24)-C(25)	107.8(3)
C(29)-C(24)-C(25)	115.0(4)
O(6)-C(24)-H(24)	110.2
C(29)-C(24)-H(24)	110.2
C(25)-C(24)-H(24)	110.2
O(8)-C(25)-C(26)	114.0(3)
O(8)-C(25)-C(24)	109.3(4)
C(26)-C(25)-C(24)	110.3(3)
O(8)-C(25)-H(25)	107.7
C(26)-C(25)-H(25)	107.7
C(24)-C(25)-H(25)	107.7
C(25)-C(26)-C(27)	116.0(3)
C(25)-C(26)-H(26A)	108.3
C(27)-C(26)-H(26A)	108.3
C(25)-C(26)-H(26B)	108.3
C(27)-C(26)-H(26B)	108.3
H(26A)-C(26)-H(26B)	107.4
O(9)-C(27)-C(26)	111.8(3)
O(9)-C(27)-C(30)	109.1(3)
C(26)-C(27)-C(30)	110.6(3)
O(9)-C(27)-C(28)	107.5(3)
C(26)-C(27)-C(28)	111.3(3)
C(30)-C(27)-C(28)	106.5(3)
C(29)-C(28)-C(27)	114.7(4)
C(29)-C(28)-H(28A)	108.6

C(27)-C(28)-H(28A)	108.6
C(29)-C(28)-H(28B)	108.6
C(27)-C(28)-H(28B)	108.6
H(28A)-C(28)-H(28B)	107.6
O(7)-C(29)-C(28)	110.2(3)
O(7)-C(29)-C(24)	104.2(3)
C(28)-C(29)-C(24)	113.9(4)
O(7)-C(29)-H(29)	109.5
C(28)-C(29)-H(29)	109.5
C(24)-C(29)-H(29)	109.5
O(10)-C(30)-N(2)	122.0(4)
O(10)-C(30)-C(27)	119.6(4)
N(2)-C(30)-C(27)	118.3(4)
N(2)-C(31)-C(32)	113.5(4)
N(2)-C(31)-H(31A)	108.9
C(32)-C(31)-H(31A)	108.9
N(2)-C(31)-H(31B)	108.9
C(32)-C(31)-H(31B)	108.9
H(31A)-C(31)-H(31B)	107.7
C(31)-C(32)-C(34)	110.7(4)
C(31)-C(32)-C(33)	110.8(4)
C(34)-C(32)-C(33)	111.8(4)
C(31)-C(32)-H(32)	107.8
C(34)-C(32)-H(32)	107.8
C(33)-C(32)-H(32)	107.8
C(32)-C(33)-H(33A)	109.5
C(32)-C(33)-H(33B)	109.5
H(33A)-C(33)-H(33B)	109.5
C(32)-C(33)-H(33C)	109.5
H(33A)-C(33)-H(33C)	109.5
H(33B)-C(33)-H(33C)	109.5
C(32)-C(34)-H(34A)	109.5
C(32)-C(34)-H(34B)	109.5
H(34A)-C(34)-H(34B)	109.5
C(32)-C(34)-H(34C)	109.5
H(34A)-C(34)-H(34C)	109.5
H(34B)-C(34)-H(34C)	109.5
C(40)-C(35)-C(36)	112.3(4)

C(40)-C(35)-H(35A)	109.1
C(36)-C(35)-H(35A)	109.1
C(40)-C(35)-H(35B)	109.1
C(36)-C(35)-H(35B)	109.1
H(35A)-C(35)-H(35B)	107.9
C(37)-C(36)-C(35)	112.7(4)
C(37)-C(36)-H(36A)	109.0
C(35)-C(36)-H(36A)	109.0
C(37)-C(36)-H(36B)	109.0
C(35)-C(36)-H(36B)	109.0
H(36A)-C(36)-H(36B)	107.8
C(36)-C(37)-C(38)	110.8(4)
C(36)-C(37)-H(37A)	109.5
C(38)-C(37)-H(37A)	109.5
C(36)-C(37)-H(37B)	109.5
C(38)-C(37)-H(37B)	109.5
H(37A)-C(37)-H(37B)	108.1
O(11)-C(38)-O(12)	105.7(3)
O(11)-C(38)-C(39)	108.3(4)
O(12)-C(38)-C(39)	109.4(4)
O(11)-C(38)-C(37)	111.4(3)
O(12)-C(38)-C(37)	109.7(4)
C(39)-C(38)-C(37)	112.1(3)
C(38)-C(39)-C(40)	112.1(4)
C(38)-C(39)-H(39A)	109.2
C(40)-C(39)-H(39A)	109.2
C(38)-C(39)-H(39B)	109.2
C(40)-C(39)-H(39B)	109.2
H(39A)-C(39)-H(39B)	107.9
C(35)-C(40)-C(39)	110.2(4)
C(35)-C(40)-H(40A)	109.6
C(39)-C(40)-H(40A)	109.6
C(35)-C(40)-H(40B)	109.6
C(39)-C(40)-H(40B)	109.6
H(40A)-C(40)-H(40B)	108.1
O(12)-C(41)-C(46)	101.3(3)
O(12)-C(41)-C(42)	111.1(3)
C(46)-C(41)-C(42)	112.7(3)

O(12)-C(41)-H(41)	110.5
C(46)-C(41)-H(41)	110.5
C(42)-C(41)-H(41)	110.5
O(13)-C(42)-C(43)	110.4(3)
O(13)-C(42)-C(41)	106.9(3)
C(43)-C(42)-C(41)	109.9(3)
O(13)-C(42)-H(42)	109.8
C(43)-C(42)-H(42)	109.8
C(41)-C(42)-H(42)	109.8
C(42)-C(43)-C(44)	109.3(3)
C(42)-C(43)-H(43A)	109.8
C(44)-C(43)-H(43A)	109.8
C(42)-C(43)-H(43B)	109.8
C(44)-C(43)-H(43B)	109.8
H(43A)-C(43)-H(43B)	108.3
O(14)-C(44)-C(43)	105.7(3)
O(14)-C(44)-C(45)	112.7(3)
C(43)-C(44)-C(45)	109.7(3)
O(14)-C(44)-C(47)	111.0(3)
C(43)-C(44)-C(47)	108.4(3)
C(45)-C(44)-C(47)	109.1(3)
C(46)-C(45)-C(44)	115.8(3)
C(46)-C(45)-H(45A)	108.3
C(44)-C(45)-H(45A)	108.3
C(46)-C(45)-H(45B)	108.3
C(44)-C(45)-H(45B)	108.3
H(45A)-C(45)-H(45B)	107.4
O(11)-C(46)-C(45)	111.3(3)
O(11)-C(46)-C(41)	102.1(3)
C(45)-C(46)-C(41)	116.4(3)
O(11)-C(46)-H(46)	108.9
C(45)-C(46)-H(46)	108.9
C(41)-C(46)-H(46)	108.9
O(15)-C(47)-N(3)	124.5(4)
O(15)-C(47)-C(44)	120.5(4)
N(3)-C(47)-C(44)	115.0(4)
N(3)-C(48)-C(49)	112.4(4)
N(3)-C(48)-H(48A)	109.1

C(49)-C(48)-H(48A)	109.1
N(3)-C(48)-H(48B)	109.1
C(49)-C(48)-H(48B)	109.1
H(48A)-C(48)-H(48B)	107.9
C(51)-C(49)-C(48)	111.2(4)
C(51)-C(49)-C(50)	111.9(4)
C(48)-C(49)-C(50)	107.9(4)
C(51)-C(49)-H(49)	108.6
C(48)-C(49)-H(49)	108.6
C(50)-C(49)-H(49)	108.6
C(49)-C(50)-H(50A)	109.5
C(49)-C(50)-H(50B)	109.5
H(50A)-C(50)-H(50B)	109.5
C(49)-C(50)-H(50C)	109.5
H(50A)-C(50)-H(50C)	109.5
H(50B)-C(50)-H(50C)	109.5
C(49)-C(51)-H(51A)	109.5
C(49)-C(51)-H(51B)	109.5
H(51A)-C(51)-H(51B)	109.5
C(49)-C(51)-H(51C)	109.5
H(51A)-C(51)-H(51C)	109.5
H(51B)-C(51)-H(51C)	109.5
C(53)-C(52)-C(57)	110.6(4)
C(53)-C(52)-H(52A)	109.5
C(57)-C(52)-H(52A)	109.5
C(53)-C(52)-H(52B)	109.5
C(57)-C(52)-H(52B)	109.5
H(52A)-C(52)-H(52B)	108.1
C(52)-C(53)-C(54)	110.9(4)
C(52)-C(53)-H(53A)	109.5
C(54)-C(53)-H(53A)	109.5
C(52)-C(53)-H(53B)	109.5
C(54)-C(53)-H(53B)	109.5
H(53A)-C(53)-H(53B)	108.1
C(55)-C(54)-C(53)	112.2(4)
C(55)-C(54)-H(54A)	109.2
C(53)-C(54)-H(54A)	109.2
C(55)-C(54)-H(54B)	109.2

C(53)-C(54)-H(54B)	109.2
H(54A)-C(54)-H(54B)	107.9
O(16)-C(55)-O(17)	104.4(3)
O(16)-C(55)-C(54)	110.0(3)
O(17)-C(55)-C(54)	108.8(4)
O(16)-C(55)-C(56)	111.3(4)
O(17)-C(55)-C(56)	110.4(4)
C(54)-C(55)-C(56)	111.7(3)
C(55)-C(56)-C(57)	111.5(4)
C(55)-C(56)-H(56A)	109.3
C(57)-C(56)-H(56A)	109.3
C(55)-C(56)-H(56B)	109.3
C(57)-C(56)-H(56B)	109.3
H(56A)-C(56)-H(56B)	108.0
C(56)-C(57)-C(52)	111.0(4)
C(56)-C(57)-H(57A)	109.4
C(52)-C(57)-H(57A)	109.4
C(56)-C(57)-H(57B)	109.4
C(52)-C(57)-H(57B)	109.4
H(57A)-C(57)-H(57B)	108.0
O(16)-C(58)-C(59)	111.0(3)
O(16)-C(58)-C(63)	102.6(3)
C(59)-C(58)-C(63)	114.7(3)
O(16)-C(58)-H(58)	109.5
C(59)-C(58)-H(58)	109.5
C(63)-C(58)-H(58)	109.5
C(58)-C(59)-C(60)	116.5(4)
C(58)-C(59)-H(59A)	108.2
C(60)-C(59)-H(59A)	108.2
C(58)-C(59)-H(59B)	108.2
C(60)-C(59)-H(59B)	108.2
H(59A)-C(59)-H(59B)	107.3
O(18)-C(60)-C(64)	106.6(3)
O(18)-C(60)-C(59)	111.6(3)
C(64)-C(60)-C(59)	106.7(3)
O(18)-C(60)-C(61)	109.6(3)
C(64)-C(60)-C(61)	110.5(3)
C(59)-C(60)-C(61)	111.7(3)

C(62)-C(61)-C(60)	113.7(4)
C(62)-C(61)-H(61A)	108.8
C(60)-C(61)-H(61A)	108.8
C(62)-C(61)-H(61B)	108.8
C(60)-C(61)-H(61B)	108.8
H(61A)-C(61)-H(61B)	107.7
O(19)-C(62)-C(61)	113.2(3)
O(19)-C(62)-C(63)	108.4(4)
C(61)-C(62)-C(63)	110.7(3)
O(19)-C(62)-H(62)	108.2
C(61)-C(62)-H(62)	108.2
C(63)-C(62)-H(62)	108.2
O(17)-C(63)-C(62)	107.3(3)
O(17)-C(63)-C(58)	105.7(3)
C(62)-C(63)-C(58)	114.2(3)
O(17)-C(63)-H(63)	109.9
C(62)-C(63)-H(63)	109.9
C(58)-C(63)-H(63)	109.9
O(20)-C(64)-N(4)	122.2(4)
O(20)-C(64)-C(60)	119.6(3)
N(4)-C(64)-C(60)	118.2(4)
N(4)-C(65)-C(66)	113.8(4)
N(4)-C(65)-H(65A)	108.8
C(66)-C(65)-H(65A)	108.8
N(4)-C(65)-H(65B)	108.8
C(66)-C(65)-H(65B)	108.8
H(65A)-C(65)-H(65B)	107.7
C(68)-C(66)-C(65)	112.8(3)
C(68)-C(66)-C(67)	110.0(4)
C(65)-C(66)-C(67)	112.0(4)
C(68)-C(66)-H(66)	107.3
C(65)-C(66)-H(66)	107.3
C(67)-C(66)-H(66)	107.3
C(66)-C(67)-H(67A)	109.5
C(66)-C(67)-H(67B)	109.5
H(67A)-C(67)-H(67B)	109.5
C(66)-C(67)-H(67C)	109.5
H(67A)-C(67)-H(67C)	109.5

H(67B)-C(67)-H(67C)	109.5
C(66)-C(68)-H(68A)	109.5
C(66)-C(68)-H(68B)	109.5
H(68A)-C(68)-H(68B)	109.5
C(66)-C(68)-H(68C)	109.5
H(68A)-C(68)-H(68C)	109.5
H(68B)-C(68)-H(68C)	109.5
C(13)-N(1)-C(14)	123.6(4)
C(13)-N(1)-H(1N)	118.2
C(14)-N(1)-H(1N)	118.2
C(30)-N(2)-C(31)	125.6(3)
C(30)-N(2)-H(2N)	117.2
C(31)-N(2)-H(2N)	117.2
C(47)-N(3)-C(48)	122.4(4)
C(47)-N(3)-H(3N)	118.8
C(48)-N(3)-H(3N)	118.8
C(64)-N(4)-C(65)	123.2(4)
C(64)-N(4)-H(4N)	118.4
C(65)-N(4)-H(4N)	118.4
C(4)-O(1)-C(7)	107.0(3)
C(12)-O(2)-C(4)	107.9(3)
C(9)-O(3)-H(3)	109.5
C(11)-O(4)-H(4)	109.5
C(18)-O(6)-C(24)	109.6(3)
C(18)-O(7)-C(29)	105.8(3)
C(25)-O(8)-H(8)	109.5
C(27)-O(9)-H(9)	109.5
C(38)-O(11)-C(46)	105.3(3)
C(38)-O(12)-C(41)	109.6(3)
C(42)-O(13)-H(13)	109.5
C(44)-O(14)-H(14)	109.5
C(55)-O(16)-C(58)	105.9(3)
C(63)-O(17)-C(55)	105.7(3)
C(60)-O(18)-H(18)	109.5
C(62)-O(19)-H(19)	109.5

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	32(3)	35(3)	22(2)	-8(2)	0(2)	14(2)
C(2)	24(3)	38(3)	16(2)	4(2)	4(2)	16(2)
C(3)	22(3)	29(2)	19(2)	6(2)	2(2)	13(2)
C(4)	15(2)	22(2)	15(2)	1(2)	-1(2)	11(2)
C(5)	19(2)	28(2)	26(2)	7(2)	4(2)	10(2)
C(6)	20(3)	22(2)	31(3)	-4(2)	0(2)	8(2)
C(7)	15(2)	17(2)	20(2)	5(2)	4(2)	12(2)
C(8)	18(2)	11(2)	16(2)	4(2)	4(2)	9(2)
C(9)	13(2)	19(2)	14(2)	3(2)	2(2)	6(2)
C(10)	20(2)	17(2)	18(2)	5(2)	5(2)	10(2)
C(11)	12(2)	17(2)	22(2)	6(2)	2(2)	9(2)
C(12)	14(2)	19(2)	13(2)	3(2)	2(2)	8(2)
C(13)	13(2)	14(2)	15(2)	4(2)	2(2)	7(2)
C(14)	23(2)	18(2)	18(2)	8(2)	9(2)	15(2)
C(15)	30(3)	25(2)	18(2)	8(2)	8(2)	20(2)
C(16)	33(3)	42(3)	34(3)	14(2)	7(2)	26(2)
C(17)	29(3)	25(2)	33(3)	9(2)	13(2)	15(2)
C(18)	16(2)	31(2)	18(2)	6(2)	3(2)	13(2)
C(19)	25(3)	33(3)	24(2)	12(2)	9(2)	16(2)
C(20)	27(3)	46(3)	20(2)	8(2)	2(2)	17(2)
C(21)	28(3)	36(3)	24(3)	-1(2)	2(2)	16(2)
C(22)	34(3)	33(3)	26(2)	0(2)	6(2)	18(2)
C(23)	26(3)	41(3)	21(2)	5(2)	4(2)	21(2)
C(24)	19(2)	22(2)	27(2)	11(2)	8(2)	12(2)
C(25)	12(2)	20(2)	21(2)	4(2)	8(2)	6(2)
C(26)	19(2)	17(2)	21(2)	3(2)	4(2)	12(2)
C(27)	13(2)	16(2)	19(2)	5(2)	3(2)	8(2)
C(28)	13(2)	23(2)	25(2)	8(2)	4(2)	11(2)
C(29)	18(2)	22(2)	23(2)	8(2)	5(2)	13(2)
C(30)	11(2)	18(2)	22(2)	3(2)	2(2)	10(2)
C(31)	16(2)	19(2)	21(2)	3(2)	6(2)	12(2)
C(32)	30(3)	24(2)	24(2)	6(2)	8(2)	19(2)
C(33)	27(3)	50(3)	23(2)	4(2)	4(2)	25(2)

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for 101129LTB. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2 [h^2 \ a^{*2}U^{11} + ... + 2h \ k \ a^* \ b^* \ U^{12}]$

C(34)	40(3)	45(3)	23(2)	9(2)	7(2)	29(3)
C(35)	38(3)	26(2)	14(2)	0(2)	2(2)	11(2)
C(36)	42(3)	27(2)	14(2)	-2(2)	7(2)	17(2)
C(37)	31(3)	29(2)	22(2)	5(2)	8(2)	22(2)
C(38)	28(3)	19(2)	14(2)	3(2)	6(2)	6(2)
C(39)	28(3)	24(2)	14(2)	3(2)	2(2)	14(2)
C(40)	27(3)	30(2)	21(2)	2(2)	3(2)	16(2)
C(41)	16(2)	18(2)	19(2)	7(2)	5(2)	9(2)
C(42)	14(2)	10(2)	20(2)	2(2)	4(2)	5(2)
C(43)	12(2)	11(2)	18(2)	3(2)	3(2)	0(2)
C(44)	10(2)	12(2)	20(2)	3(2)	1(2)	5(2)
C(45)	23(2)	15(2)	20(2)	4(2)	4(2)	13(2)
C(46)	20(2)	17(2)	20(2)	1(2)	7(2)	11(2)
C(47)	15(2)	10(2)	20(2)	0(2)	3(2)	4(2)
C(48)	24(3)	19(2)	18(2)	5(2)	3(2)	4(2)
C(49)	18(2)	32(2)	20(2)	2(2)	3(2)	14(2)
C(50)	28(3)	38(3)	19(2)	-1(2)	3(2)	15(2)
C(51)	35(3)	28(3)	28(3)	1(2)	4(2)	8(2)
C(52)	33(3)	44(3)	18(2)	5(2)	3(2)	16(2)
C(53)	25(3)	39(3)	21(2)	5(2)	0(2)	16(2)
C(54)	22(3)	29(2)	18(2)	4(2)	7(2)	6(2)
C(55)	26(3)	15(2)	14(2)	2(2)	5(2)	11(2)
C(56)	19(2)	39(3)	21(2)	2(2)	5(2)	17(2)
C(57)	33(3)	46(3)	20(2)	7(2)	12(2)	16(2)
C(58)	16(2)	22(2)	19(2)	0(2)	3(2)	11(2)
C(59)	21(2)	17(2)	19(2)	2(2)	2(2)	11(2)
C(60)	10(2)	15(2)	18(2)	3(2)	1(2)	5(2)
C(61)	16(2)	19(2)	16(2)	1(2)	2(2)	11(2)
C(62)	19(2)	16(2)	21(2)	4(2)	0(2)	6(2)
C(63)	13(2)	24(2)	19(2)	7(2)	3(2)	6(2)
C(64)	13(2)	21(2)	17(2)	3(2)	3(2)	10(2)
C(65)	19(2)	26(2)	18(2)	3(2)	2(2)	13(2)
C(66)	24(3)	22(2)	17(2)	4(2)	2(2)	15(2)
C(67)	26(3)	27(2)	27(2)	6(2)	12(2)	14(2)
C(68)	34(3)	25(2)	24(2)	4(2)	9(2)	17(2)
N(1)	13(2)	21(2)	16(2)	4(1)	4(1)	8(2)
N(2)	16(2)	15(2)	21(2)	3(1)	4(2)	6(2)
N(3)	17(2)	19(2)	16(2)	3(1)	1(2)	7(2)

N(4)	18(2)	16(2)	15(2)	1(1)	3(1)	7(2)
O(1)	16(2)	27(2)	15(1)	0(1)	3(1)	14(1)
O(2)	17(2)	25(2)	15(1)	0(1)	2(1)	14(1)
O(3)	13(2)	16(1)	20(2)	5(1)	3(1)	4(1)
O(4)	18(2)	21(2)	23(2)	4(1)	2(1)	15(1)
O(5)	19(2)	22(2)	19(2)	1(1)	5(1)	5(1)
O(6)	19(2)	38(2)	21(2)	5(1)	7(1)	13(2)
O(7)	19(2)	27(2)	18(2)	6(1)	8(1)	12(1)
O(8)	25(2)	16(2)	23(2)	2(1)	7(1)	5(1)
O(9)	15(2)	14(1)	24(2)	-2(1)	6(1)	7(1)
O(10)	20(2)	14(1)	24(2)	0(1)	6(1)	6(1)
O(11)	24(2)	17(1)	14(1)	3(1)	3(1)	8(1)
O(12)	24(2)	19(2)	16(2)	5(1)	4(1)	4(1)
O(13)	18(2)	12(1)	25(2)	5(1)	6(1)	5(1)
O(14)	13(2)	15(1)	23(2)	7(1)	3(1)	4(1)
O(15)	21(2)	26(2)	23(2)	6(1)	0(1)	15(1)
O(16)	25(2)	19(2)	16(2)	2(1)	0(1)	9(1)
O(17)	23(2)	21(2)	17(2)	3(1)	-1(1)	9(1)
O(18)	18(2)	19(2)	24(2)	9(1)	-2(1)	-2(1)
O(19)	30(2)	17(2)	22(2)	6(1)	-1(1)	-5(1)
O(20)	17(2)	20(2)	19(2)	3(1)	-1(1)	-1(1)

	Х	у	Z	U(eq)
H(1A)	5809	10220	5113	38
H(1B)	6820	9649	4851	38
H(2A)	4760	7874	4954	31
H(2B)	3856	8291	4258	31
H(3A)	4085	6537	3484	27
H(3B)	5722	7320	3812	27
H(5A)	7001	9392	3156	29
H(5B)	6088	9809	2468	29
H(6A)	5163	10378	3613	32
H(6B)	6801	11140	3936	32
H(7)	3272	5690	1736	10
$H(8\Lambda)$	2950	5228	234	17
H(8R)	<i>295</i> 0	5710	580	17
H(10A)	4500	9388	360	21
H(10R)	2255	7073	-300	21
H(10B)	4240	0018	-201	10
H(11)	4340	9018	1194	19
H(12)	2033	5415	2710	18
H(14A)	5480	5415	-2719	20
H(14D)	3073	6207	-2094	20
H(15)	3910	6890	-3725	25
H(16A)	1994	(2)(7	-2388	49
H(16B)	1884	6267	-3201	49
H(16C)	2441	7750	-3370	49
H(17A)	4952	9125	-3194	41
H(17B)	5997	8583	-2814	41
H(17C)	5161	8957	-2171	41
H(19A)	9394	2595	3857	31
H(19B)	10178	2064	3258	31
H(20A)	12126	4063	3683	37
H(20B)	11706	3603	4578	37
H(21A)	10709	5010	4741	36
H(21B)	12250	5840	4657	36

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å 2 x 10^3) for 101129LTB.

H(22A)	11488	5828	3157	37
H(22B)	10703	6370	3748	37
H(23A)	8747	4368	3323	33
H(23B)	9171	4833	2431	33
H(24)	8074	614	1509	25
H(25)	6617	1543	707	22
H(26A)	8353	3524	683	21
H(26B)	7583	2752	-330	21
H(28A)	10011	1461	242	23
H(28B)	11274	2856	695	23
H(29)	10348	1727	1797	23
H(31A)	9614	1753	-2576	21
H(31B)	10968	3064	-2518	21
H(32)	9576	4132	-2850	28
H(33A)	7182	2886	-3372	47
H(33B)	7645	2762	-2361	47
H(33C)	7288	1598	-3186	47
H(34A)	8953	1939	-4226	49
H(34B)	10297	3310	-4028	49
H(34C)	8818	3219	-4402	49
H(35A)	5811	5140	4138	34
H(35B)	4845	3790	4374	34
H(36A)	6701	3850	5390	33
H(36B)	7100	4010	4442	33
H(37A)	8463	6232	4965	29
H(37B)	8918	5497	5673	29
H(39A)	6829	7253	5397	26
H(39B)	6428	7103	6346	26
H(40A)	5059	4846	5823	30
H(40B)	4586	5573	5117	30
H(41)	10617	8148	7608	20
H(42)	8141	8275	7881	18
H(43A)	9209	8879	9476	19
H(43B)	10386	8510	9261	19
H(45A)	9723	6028	8735	21
H(45B)	8126	5081	8340	21
H(46)	9516	5918	7251	22
H(48A)	8735	6253	11585	27

H(48B)	7126	5794	11467	27
H(49)	7553	7985	11908	27
H(50A)	7456	6660	12996	44
H(50B)	8413	8171	13441	44
H(50C)	9090	7232	13206	44
H(51A)	10395	8620	12221	51
H(51B)	9813	9634	12472	51
H(51C)	9603	9017	11438	51
H(52A)	1372	800	3975	39
H(52B)	1225	-501	4311	39
H(53A)	-157	252	4950	35
H(53B)	1122	1661	5353	35
H(54A)	768	495	6522	30
H(54B)	827	-703	5927	30
H(56A)	3211	-314	5593	30
H(56B)	4475	1099	6013	30
H(57A)	3583	879	4448	39
H(57B)	3490	2055	5048	39
H(58)	5044	1140	7489	22
H(59A)	5487	1822	9020	22
H(59B)	4320	347	8761	22
H(61A)	2314	2127	8356	19
H(61B)	3118	3204	9269	19
H(62)	3915	4048	8044	24
H(63)	5263	3106	7337	23
H(65A)	5884	2696	11766	24
H(65B)	5042	1273	11949	24
H(66)	4971	2846	13011	23
H(67A)	2288	1244	11878	38
H(67B)	2593	1923	12911	38
H(67C)	3030	798	12656	38
H(68A)	3601	3531	11581	39
H(68B)	5134	4439	12165	39
H(68C)	3869	4108	12631	39
H(1N)	5404	7356	-1292	19
H(2N)	10700	3937	-1202	21
H(3N)	7187	6800	10228	22
H(4N)	3405	819	10662	20

H(3)	5720	8536	-17	26
H(4)	1693	8417	685	28
H(8)	7348	550	-545	35
H(9)	10187	4791	464	27
H(13)	9570	10322	8325	29
H(14)	6595	5882	8662	27
H(18)	1815	318	8780	37
H(19)	5754	3834	9251	44