Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Aryl alkyl carbene-Pd complex assisted C-Cl bond activation: An unprecedented cross-coupling route to *trans*-stilbenes

Abadh Kishor Jha,^a Shyam Kishor,^b Dhananjay Kumar,^a and Nidhi Jain*^a

^aDepartment of Chemistry, Indian Institute of Technology, New Delhi-110016

^bDepartment of Chemistry, J.V. College, Uttar Pradesh-250611

*E-mail: <u>njain@chemistry.iitd.ac.in;</u> Fax: +91 11 26581102; Tel: +91 11 26591562

SN	Particulars	Pages
1.	Experimental procedures and NMR data of synthesized compounds	S1
2.	Copies of ¹ H NMR, ¹³ C NMR and Mass spectra (Spectrum 1-60)	S8
3.	HPLC data (Figure S1)	S46
4.	UV-visible spectrum of compound 3a (Figure S2)	S47
5.	DLS data of reaction mixture (Figure S3)	S47
6.	COSY45 spectrum of reaction mixture at 10 minutes (Figure S4)	S48
7.	DEPT90 spectrum of reaction mixture at 10 minutes (Figure S5-6)	S49
8.	Sequential LC-MS data of the reaction mixture at 1, 5, and 10 minutes (Figure S7-9)	S50
9.	EDAX of reaction mixture after 5 minutes (Figure S10)	S52
10.	Single Crystal X-ray details (Figure S11; Table S1)	S53
11.	Computational details (Figure S11-27; Table S2-18)	S 55
12.	References	S82

Table of content

1. Experimental Section

All starting materials were commercially available and were used without further purification. 1-(bromoethyl)benzene was prepared by reaction of styrene with hydrobromic acid in acetic acid. 1-(hydroxyethyl)benzene was prepared by reduction of acetophenone with sodium borohydride in methanol. 1-(iodoethyl)benzene and 1-(chloroethyl)benzene were prepared by reaction of 1-(hydroxyethyl)benzene with molecular iodine and concentrated hydrochloric acid respectively. All reactions were done under Microwave irradiation using CEM Discover system microwave at a MW power of 50 watts. The products were purified by column chromatography on silica gel. ¹H and ¹³C NMR spectra were measured on a Bruker DPX-300 MHz spectrometer (¹H 300 MHz, ¹³C 75 MHz), using CDCl₃ as the solvent with tetramethylsilane (TMS) as the internal standard at room temperature. Chemical shifts are given in δ relative to TMS, the coupling constants J are given in Hz. δ given in ppm. UV spectra was obtained in hexane on Perkin Elmer (Lamda Bio 20) spectrophotometer. The ESI -MS was performed on MICROTOF II mass instrument. LCMS was performed on Waters 2767 sample manager with waters ZQ mass detector. Molecular mass (GC-MS) of compounds were measured on Perkin Elmer Clarus 600 C. The size of nanoparticles was determined by Malvern DLS. IR spectra were recorded on Nicolet 460 (Protege) spectrophotometer in range 4000-400 cm⁻¹.

General procedure for the synthesis of *trans*-stilbenoids (3a-l)

In a typical procedure, to **1a** (1.08 mmol) procured from Alfa aeser, 30% styrene (0.46 mmol) was added at the beginning of the reaction. The contents were taken in 5 mL microwave tube containing 1.0 mL DMF. To it, aryl chloride (4.64 mmol) and then KOH (4.64 mmol) dissolved in 1mL water was added. This was followed by addition of $Pd(OAc)_2$ (0.5 mol%) to the reaction mixture. The contents were irradiated in microwave for 50 min at 140 °C where after the reaction mixture was extracted with hexane (3 x 25 mL). The combined organic layers were washed with water, dried over Na₂SO₄ and concentrated under reduced pressure. Chromatography on silica gel afforded pure product.

In an alternate procedure, product mixture of synthesized **1a** (containing 0.7 equiv. **1a** and 0.3 equiv. styrene) was taken in 1 mL DMF in a 5.0 mL microwave tube. To it, aryl chloride (3.0 equiv.) and KOH (3.0 equiv.) dissolved in 1.0 mL water were added. This was followed by addition of $Pd(OAc)_2$ (0.5 mol%) to the reaction mixture. The contents were irradiated in

microwave for 50 minutes at 140 $^{\circ}$ C where after the reaction mixture was extracted with hexane (3 x 25 mL). The combined organic layers were washed with water, dried over Na₂SO₄ and concentrated under reduced pressure. Chromatography on silica gel afforded pure product.

General procedure for the synthesis of *trans*-stilbenoids (3m, 3n, 3o):

To 1-(bromoethyl)naphthalene (**1a'**) (1.49 mmol) prepared from 2-vinyl naphthalene, 30% styrene (0.64 mmol) was added at the beginning of the reaction. The contents were taken in 5 mL microwave tube containing 1 mL DMF. To it, aryl chloride (6.39 mmol) followed by KOH (6.39 mmol) dissolved in 1 mL water was added. This was followed by addition of $Pd(OAc)_2$ (0.5 mol%) to the reaction mixture. The contents were irradiated in microwave for 50 min at 140 °C where after the reaction mixture was extracted with hexane (3 x 25 mL). The combined organic layers were washed with water, dried over Na₂SO₄ and concentrated under reduced pressure. Chromatography on silica gel afforded pure product.

Experimental procedure for quenching reaction using TEMPO:

To **1a** (1.08 mmol) procured from Alfa Aeser, 30% styrene (0.46 mmol) was added. The contents were taken in 5 mL microwave tube containing 1.0 mL DMF. To it, aryl chloride (4.64 mmol), TEMPO (1.54 mmol), and KOH (4.64 mmol) dissolved in 1mL water was added. This was followed by addition of $Pd(OAc)_2$ (0.5 mol%) to the reaction mixture. The contents were irradiated in microwave for 50 min at 140 °C where after the reaction mixture was extracted with hexane (2 x 5 mL). The contents were then concentrated under reduced pressure.

General procedure for time dependent NMR studies:

To **1a** (0.36mmol) procured from Alfa Aeser, 30% styrene (0.15 mmol) was added at the beginning of the reaction. The contents were taken in 5 mL microwave tube containing 1.0 mL DMF. To it, aryl chloride (1.54 mmol) followed by KOH (1.54 mmol) dissolved in 1.0 mL water was added. Pd(OAc)₂ (0.5 mol%) was added to the reaction mixture. The contents were stirred well for 1-2 minutes, extracted with 5.0 mL hexane, dried over Na₂SO₄ and then concentrated under reduced pressure which resulted in loss of most of the styrene as it is highly volatile. ¹H NMR of this sample was taken in CDCl₃. This was considered to be reaction at zero minutes. The same procedure was repeated eight more times after irradiating the reaction mixture in microwave at 140 °C for different reaction times: 1, 2, 5, 10, 20, 30,

40 and 50 minutes. After each reaction, work up was done as described above and ¹H NMR of the sample was taken in CDCl₃.

Experimental procedures for the synthesis of starting materials and characterization data of *trans*-stilbenoids:

1-(Bromoethyl)benzene (1a): Styrene (43.2 mmol) was taken in 50 mL R.B. flask containing 1.0 mL acetic acid. 33% hydrobromic acid in acetic acid (43.2 mmol) was added drop-wise with continuous shaking at rt. The contents were then stirred at rt for 4 h. The progress of reaction was monitored through TLC. After completion of reaction, the reaction mixture was neutralized with aqueous sodium bicarbonate solution. Product was extracted with dichloromethane and concentrated under reduced pressure. % conversion was determined by HPLC (Fig. S4). Light brown liquid; yield = 5.56 g, 70%; ¹H NMR (300 MHz, CDCl₃)¹ δ (ppm) 7.38 (d, *J* = 7.2 Hz, 2H), 7.20-7.30 (m, 3H), 5.15 (q, *J* = 6.6 Hz, 1H), 1.97 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 143.0, 128.5, 128.2, 126.6, 49.4, 26.7. LRMS-ESI exact mass calcd. For C₈H₁₀Na⁺ [M+H+Na]⁺ equires *m/z* 129.0680, found *m/z* 129.0550.

2-(1-bromoethyl)naphthalene (1a'): 2-Vinylnaphthalene (3.26 mmol) was taken in 50 mL round bottom flask containing 1 mL acetic acid. 33% hydrobromoic acid in acetic acid (3.25 mmol) was added dropwise with proper shaking at room temperature. The contents were there after stirred at room temperature for 4 h. After completion of reaction, the reaction mixture was neutralized by aqueous sodium bicarbonate solution. The product was extracted with dichloromethane and concentrated under reduced pressure. Light brown liquid; yield = 748 mg, 98%; ¹H NMR (300MHz, CDCl₃)² δ (ppm) 7.83 (t, *J* = 6.6 Hz, 4H), 7.58-7.61 (m, 1H), 7.47-7.50 (m, 2H), 5.40 (q, *J* = 6.9 Hz, 1H), 2.14 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 140.5, 133.2, 133.1, 128.7, 128.2, 127.7, 126.5, 125.2, 125.1, 50.1, 26.8. EI-MS (*m/z*): 155.

1-(Iodoethyl)benzene (1c): 1-(hydroxyethyl)benzene (4.1 mmol) was mixed properly with a crushed mixture of triphenylphosphene (4.1 mmol) and iodine (4.1 mmol). The entire contents were taken in microwave tube and irradiated in microwave for 5 minutes. Product was extracted in hexane-water mixture and concentrated under reduced pressure. Pure **1c** was obtained and was characterized by NMR and mass. Dark yellow orange liquid; yield = 913 mg, 96%; ¹H NMR (300MHz, CDCl₃)³ δ (ppm) 7.39-7.55 (m, 5H), 5.51 (q, *J* = 6.3 Hz, 1H),

2.31 (d, J = 6.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 145.5, 128.9, 128.1, 126.8, 29.2, 26.6. EI-MS (*m/z*): 105.

1-(Chloroethyl)benzene (1d): 1-(hydroxyethyl)benzene (16.4 mmol) was shaken with 45 mL concentrated hydrochloric acid in separating funnel for 20 minutes. The aqueous layer was removed and an additional 25 mL of conc. HCl was added to the organic layer and again shaken for 20 minutes. The aqueous layer was removed and organic layer was washed four times with 25 mL water followed by a wash with 20 mL of 5% NaHCO₃. The organic layer was dried under reduced pressure. Pure **1d** was obtained and was characterized by NMR and mass. Light yellow liquid; yield = 2.25 g, 98%; ¹H NMR (300MHz, CDCl₃)⁴ δ (ppm) 7.20-7.36 (m, 5H), 5.00 (q, *J* = 6.6 Hz, 1H), 1.76 (d, *J* = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 143.0, 128.8, 128.4, 126.7, 58.9, 26.7. EI-MS (*m/z*): 105.

1-(Hydroxyethyl)benzene (1e): Acetophenone (66.67 mmol) was taken in 100 mL round bottle flask containing 40 mL methanol. NaBH₄ (131.58 mmol) was added in portions. Reaction mixture was stirred at room temperature for 1 h and quenched with water. The mixture was extracted with DCM, dried over MgSO₄, and solvent was evaporated to afford the product as colourless oil. Further purification by column chromatography on silica gel afforded pure **1e**. Colorless liquid; yield = 6.84 g, 84%; ¹H NMR (300MHz, CDCl₃)⁵ δ (ppm) 7.34-7.38 (m, 4H), 7.27-7.30 (m, 1H), 4.91 (q, *J* = 6.3 Hz, 1H), 1.51 (d, *J* = 6.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 146.2, 128.5, 127.3, 125.7, 70.1, 25.3. EI-MS (*m/z*): 122.

(*E*)-1,2-Diphenylethylene (3a): White crystalline solid; yield = 167 mg, 86%; ¹H NMR (300MHz, CDCl₃) δ (ppm)⁶ 7.59 (d, *J* = 7.5 Hz 2H), 7.43 (t, *J* = 7.5 Hz, 2H), 7.28-7.36 (m, 1H), 7.18 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 137.5, 128.9, 128.8, 127.8, 126.7. EI-MS (*m/z*): 179.

(*E*)-1-Chloro-4-styrylbenzene (3b): White solid; yield = 194 mg, 84%; ¹H NMR (300MHz, CDCl₃)⁷ δ (ppm) 7.42 (d, *J* = 7.2 Hz 2H), 7.36 (d, *J* = 8.4 Hz, 2H), 7.17-7.30 (m, 5H), 6.93 (s, 1H). ¹³C NMR (75 MHz, CDCl₃, δ (ppm) 136.9, 135.8, 133.2, 129.3, 128.8, 128.7, 127.9, 127.6, 127.4, 126.5.

(*E*)-1–Nitro-4-styrylbenzene (3c): Yellowish solid; yield = 219 mg, 90%; ¹H NMR (300MHz, CDCl₃) δ (ppm) 8.24 (d, *J* = 9 Hz, 2H), 7.65 (d, *J* = 9 Hz, 2H), 7.57 (d, *J* = 7.5Hz, 2H), 7.28-7.45 (m, 4H), 7.11 (d, *J* = 13.5 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃, δ (ppm) 146.7, 143.8, 136.1, 133.2, 128.8, 128.8, 126.9, 126.8, 126.2, 124.09. HRMS-ESI exact mass

calcd. For $C_{14}H_{11}NO_2Na^+$ [M+Na]⁺ requires m/z 248.0682, found m/z 248.0685.

(*E*)-1-Cyano-4-styrylbenzene (3d): White solid; yield = 188 mg, 85%; ¹H NMR (300MHz, CDCl₃) δ (ppm) 7.55-7.67 (m, 6H), 7.32-7.44 (m, 3H), 7.24 (d, *J* = 16.2 Hz, 1H), 7.10 (d, *J* = 16.5Hz, 1H); ¹³C NMR (75 MHz,CDCl₃, δ (ppm) 141.8, 136.2, 132.4, 132.3, 128.8, 128.6, 126.9, 126.8, 126.7, 118.9, 110.5, HRMS-ESI exact mass calcd. For C₁₅H₁₂N⁺ [M]⁺ requires *m/z* 206.0964, found *m/z* 206.0958.

(*E*)-1-Styryl-4-trifluoromethylbenzene (3e): White solid; yield = 220 mg, 82%; ¹H NMR (300MHz, CDCl₃)⁸ δ (ppm) 7.51 (d, *J* = 16.8 Hz, 3H), 7.34 (t, *J* = 6.9 Hz, 3H), 7.16-7.29 (m,3H), 7.09 (d, *J* = 9.9 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃, δ (ppm) 140.8, 136.7, 131.2, 129.5, 128.8, 128.3,127.2, 126.8, 126.6, 125.7. LRMS-ESI exact mass calcd. For C₁₅H₁₂F₃K⁺ [M+H+K]⁺ requires *m/z* 288.35, found *m/z* 288.25.

(*E*)-(4-Styrylphenyl)ethanone (3f): White solid; yield = 192 mg, 80%; ¹H NMR (300MHz, $CDCl_3)^6 \delta$ (ppm) 7.97 (d, J = 7.8 Hz, 2H) 7.54-7.62 (m, 4H), 7.40 (t, J = 6.9 Hz, 2H), 7.33 (d, J = 6.9 Hz, 1H), 7.25 (d, J = 16.2 Hz, 1H), 714 (d, J = 16.2 Hz, 1H), 2.62 (s, 3H). ¹³C NMR (75 MHz, CDCl₃, δ (ppm) 197.5, 142.0, 136.7, 135.9, 131.5, 128.9, 128.8, 128.3, 127.5, 126.8, 126.5, 26.6. LRMS-ESI exact mass calcd. For $C_{16}H_{15}O^+$ [M+H]⁺ requires *m/z* 223.11, found *m/z* 223.12.

(*E*)-1-Methyl-4-stryrylbenzene (3g): White solid; yield = 155 mg, 74%; ¹H NMR (300MHz, CDCl₃) δ (ppm) 7.60 (d, J = 7.2 Hz, 2H), 7.43 – 7.53 (m, 4H), 7.32-7.37 (m, 1H), 7.26 (d, J = 7.5 Hz, 2H), 7.18 (s, 2H), 2.46 (s, 3H, CH₃); ¹³C NMR (75 MHz, CDCl₃, δ (ppm) 137.6, 137.5, 134.6, 129.5, 128.7, 127.8, 127.4, 126.5, 126.4, 21.3. EI-MS (*m/z*): 194.

(*E*)-1-Methyl-2-styrylbenzene (3h): White solid; yield = 147 mg, 70%; ¹H NMR (300MHz, CDCl₃) δ (ppm)⁹ 7.47 (d, *J* = 5.1 Hz, 2H), 7.39 (d, *J* = 5.7 Hz, 2H), 7.19-7.24 (m, 2H), 7.06-7.16 (m, 4H), 6.88 (d, *J* = 1.2 Hz, 1H), 2.30 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, δ (ppm) 137.8, 136.5, 135.9, 130.6, 130.1, 128.8, 128.6, 128.5, 127.74, 127.71, 126.7, 126.6, 126.4, 125.5, 20.1. EI-MS (*m/z*): 194.

(*E*)-1-Methoxy-4-styrylbenzene (3i): White solid; yield = 45 mg, 20%; ¹H NMR (300MHz, CDCl₃) δ (ppm) 7.22 – 7.55 (m, 4H), 6.93 – 7.15 (m, 7H), 3.98 (s, 3H); ¹³C NMR (75 MHz, CDCl₃, δ (ppm) 159.0, 137.4, 129.8, 128.3, 127.9, 127.4, 126.9, 126.3, 125.9, 113.8, 54.9. HRMS-ESI exact mass calcd. For C₁₅H₁₅O ⁺ [M+H]⁺ requires *m/z* 211.1115, found *m/z* 2011.1117.

(*E*)-2-Styrylpyridine (3j): White crystalline solid; yield = 145 mg, 74%; ¹H NMR (300MHz, CDCl₃) δ (ppm) 8.54 (d, *J* = 4.5 Hz, 1H), 7.59 (t, *J* = 6.9 Hz, 1H), 7.52 (d, *J* = 9.3 Hz, 3H), 7.31 (t, *J*= 7.5 Hz, 3H),7.24 (d, *J* = 6.9 Hz, 1H), 7.13-7.19 (m, 1H), 7.08 (t, *J* = 5.1 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃, δ (ppm) 155.6, 149.7, 136.6, 136.5, 132.7, 128.7, 128.3, 127.9, 127.1, 122.09, 122.06. HRMS-ESI exact mass calcd. For C₁₃H₁₂N⁺ [M]⁺ requires *m/z* 180.0964, found *m/z* 180.0973.

(*E*)-2-Styrylthiophene (3k): White crystalline solid; yield = 141 mg, 70%; ¹H NMR (300MHz, CDCl₃) δ (ppm) 7.47 (d, *J* = 7.5 Hz, 2H), 7.35 (t, *J* = 7.8 Hz, 2H), 7.19 (d, *J* = 6.6 Hz, 3H), 7.07 (d, *J* = 3 Hz, 1H), 7.00 (t, *J* = 3.6 Hz, 1H), 6.93 (d, *J* = 16.2 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃, δ (ppm) 142.9, 137.0, 128.8, 128.4, 127.6, 126.4, 126.1, 124.4, 121.8. HRMS-ESI exact mass calcd. For C₁₂H₁₀SNa⁺ [M+Na]⁺ requires *m/z* 209.0401, found *m/z* 209.1065.

(*E*)-1-Styrylnaphthalene (3l): White crystalline solid; yield = 274 mg, 80%; ¹H NMR (300MHz, CDCl₃)⁷ δ (ppm) 8.25 (d, *J* = 7.5 Hz, 1H), 7.89-7.95 (m, 2H), 7.77-7.85 (m, 2H), 7.64 (d, *J* = 7.5 Hz, 2H), 7.49-7.59 (m, 3H), 7.44 (t, *J* = 7.5 Hz, 2H), 7.34 (d, *J* = 7.2 Hz, 1H), 7.18 (d, *J* = 16.2 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃), δ (ppm) 137.6, 135.0, 133.7, 131.8, 131.4, 128.8, 128.6, 128.4, 128.0, 127.8, 126.7, 126.1, 125.8, 125.7, 123.8, 123.6. EI-MS (*m/z*): 230.

(*E*)-2-Styrylnaphthalene (3m): White crystalline solid; yield = 288 mg, 84%; ¹H NMR $(300MHz, DMSO)^{10} \delta$ (ppm) 8.41 (d, *J* = 7.2 Hz, 1H), 8.08 (d, *J* = 16.2 Hz, 1H), 7.88-7.97 (m, 3H), 7.78 (d, *J* = 7.5 Hz, 2H), 7.53-7.62 (m, 3H), 7.42 (t, *J* = 7.2 Hz, 2H), 7.27-7.34 (m, 2H); ¹³C NMR (75 MHz, DMSO), δ (ppm) 137.0, 134.6, 133.3, 132.6, 128.9, 128.7, 128.4, 128.2, 127.8, 127.7, 127.6, 126.5, 126.4, 126.3, 125.9, 123.6. EI-MS (*m/z*): 230.

(*E*)-1-(1-Naphthyl)-2-(2-naphthyl)ethylene (3n): White crystalline solid; yield = 260 mg, 74%; ¹H NMR (300MHz, DMSO) δ (ppm) 7.80-789 (m, 5H), 7.65-7.79 (m, 3H), 7.59 (d, *J* = 8.7 Hz, 1H), 7.41-7.52 (m, 4H), 7.25-7.38 (m, 2H), 7.04-7.2 (m, 1H); ¹³C NMR (75 MHz, DMSO), δ (ppm) 123.6, 123.8, 124.1, 124.8, 125.4, 125.5, 125.7, 125.9, 126.2, 127.1, 127.4, 127.5, 127.7, 127.94, 127.99, 128.4, 131.8, 132.3, 133.2, 134.6, 135.8, 142.9. EI-MS (*m/z*): 281.

(*E*)-2-(2-Naphthalen-2-yl-vinyl)thiophene (30): White crystalline solid; yield = 317 mg, 76%; ¹H NMR (300MHz, CDCl₃) δ (ppm) 7.13-7.23 (m, 1H), 7.27-7.41 (m, 2H), 7.43-7.45

(m, 3H), 7.57-7.73 (m, 2H), 7.75-7.82 (m, 5H); ¹³C NMR (75 MHz, CDCl₃, δ (ppm) 123.6, 125.3, 125.4, 125.6, 125.8, 125.9, 126.2, 126.4, 127.5, 127.6, 127.7, 127.8, 128.1, 128.9, 133.7, 135.6. EI-MS (*m/z*): 236.

2. Copies of ¹H NMR, ¹³C NMR and Mass Spectra:

Spectrum 2. 75 MHz ¹³C NMR of compound 1a

Spectrum 3. LRMS-ESI of compound 1a

Spectrum 5. 75 MHz $^{13}\mathrm{C}$ NMR of compound 1a'

Spectrum 6. EI-MS of compound 1a'

Spectrum 8. 75 MHz ¹³C NMR of compound 1b

Spectrum 9. EI-MS of compound 1b

Spectrum 11. 75 MHz ¹³C NMR of compound 1c

Spectrum 12. EI-MS of compound 1c

Spectrum 14. 75 MHz ¹³C NMR of compound 1d

Spectrum 15. EI-MS of compound 1d

Spectrum 17. 75 MHz ¹³C NMR of compound 3a

Spectrum 18. EI-MS of compound 3a

Spectrum 20. 75 MHz ¹³C NMR of compound 3b

Spectrum 22. 75 MHz ¹³C NMR of compound 3c

Spectrum 23. HRMS-ESI of compound 3c

Spectrum 25. 75 MHz ¹³C NMR of compound 3d

Spectrum 26. HRMS-ESI of compound 3d

Spectrum 28. 75 MHz ¹³C NMR of compound 3e

Spectrum 29. LRMS-ESI of compound 3e

Spectrum 32. LRMS-ESI of compound 3f

Spectrum 34. 75 MHz ¹³C NMR of compound 3g

Spectrum 35. EI-MS of compound 3g

Spectrum 37. 75 MHz ¹³C NMR of compound 3h

Spectrum 38. EI-MS of compound 3h

Spectrum 41. HRMS-ESI of compound 3i

Spectrum 43. 75 MHz ¹³C NMR of compound **3j**

Spectrum 44. HRMS-ESI of compound 3j

Spectrum 46. 75 MHz ¹³C NMR of compound 3k

Spectrum 47. HRMS-ESI of compound 3k

Spectrum 49. 75 MHz ¹³C NMR of compound 31

Spectrum 50. EI-MS of compound 31

Spectrum 52. 75 MHz ¹³C NMR of compound 3m

Spectrum 53. EI-MS of compound 3m

Spectrum 55. 75 MHz ¹³C NMR of compound 3n

Spectrum 56. EI-MS of compound 3n

Spectrum 58. 75 MHz ¹³C NMR of compound 30

Spectrum 59. EI-MS of compound 30

Spectrum 60. ¹³C NMR of reaction mixture at 10 minutes

Figure S1: HPLC profile showing percentage conversion of styrene to 1-(bromoethyl)benzene (1a).

4. UV-visible Spectrum

Figure S2: UV-visible spectrum of compound 3a.

5. DLS data

Figure S3: DLS of Pd catalyst during reaction (50 min in MW)

6. COSY45 spectrum

Figure S4: COSY45 of reaction mixture at 10 min

Figure S6: DEPT 135 of reaction mixture at 10 min

8. Sequential LC-MS data of the reaction mixture at 1, 5, and 10 minutes

Figure S7: LC-MS data of the reaction mixture at 1 minute

100.00

213.85

46004

3.757

1

SN	Retention Time	Area	% Area	Base Peak
1	2.528	<mark>4875</mark>	3.47	<mark>214.02</mark>
2	3.017	968	0.69	214.02
3	3.175	916	0.65	214.03
4	<mark>3.758</mark>	<mark>131788</mark>	<mark>93.80</mark>	<mark>331.22</mark>
5	3.969	914	0.65	293.25
6	4.061	526	0.37	713.39
7	4.221	507	0.36	255.14

Figure S8: LC-MS data of the reaction mixture at 5 minute

Figure S9: LC-MS of the reaction mixture at 10 minute

0.98

1.19

293.16

668.15

1619

1973

4

5

3.971

4.220

9. EDAX of reaction mixture after 5 minutes

Figure S10: EDAX of reaction mixture after 5 minutes

10. Single-Crystal X-Ray experimental details:

Data Collection and Refinement

Single-crystal X-ray data of compounds were collected on Bruker SMART CCD-Diffractometer using graphite monochromated MoK α radiation ($\lambda = 0.71073$ Å). The structures were solved by the direct method and then refined on F^2 by the full matrix leastsquares technique with the SHELX-97 set of software¹¹ using the WinGX (version 1.80.05) program package.¹² All non-hydrogen atoms were refined anisotropically and hydrogen atoms were treated as riding atoms using SHELX default parameters. Further information on the crystal structure determination (excluding structure factors) has been given as table S1 and also deposited in the Cambridge Crystallographic Data Centre as supplementary publications no. **1028616**. Copies of the data can be obtained free of charge upon application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: (+44) 1223-336-033. e-mail: deposit@ccdc.cam.ac.uk) or via internet.

Figure S11. Single crystal X-ray structure of compound 3c shown in capped stick model.

Property	Data 3c
Empirical Formula	C14 H11 N O2
Formula Weight	225.24
Crystal System	Monoclinic
Space group	P -1
<i>a</i> (Å)	7.890(3)
<i>b</i> (Å)	10.185(4)
<i>c</i> (Å)	28.422(9)
α, β, γ (°)	90, 90, 90
$V(\text{\AA}^3)$	2284.0(14)
Z	8
Density (calc)	1.310
F(000)	944.0
$\mu (\mathrm{mm}^{-1})$	0.088
Crystal Size [mm]	0.24 x 0.17 x 0.15
Temperature (K)	273(2)
Radiation / λ	Mo <i>K</i> \α / 0.71073
θ Min-Max [°]	0.982,0.987
h, k, l	-9:9; -12:12; -33:33
Tot.,UniqData, R(int)	22049, 8046, 0.099
Obs. data [I > 2.0 σ (I)]	2999
Nref, Npar	8046, 613
R1, wR2, S	0.0952, 0.2695, 0.993
Min Max. resd. dens. [e/ Å ³]	-0.170, 0.368
CCDC	1028616

 Table S1. Crystallographic refinement data for compound 3c

11. Computational details:

To support our mechanistic pathway shown in figure 5 (main text) the density functional theory $(DFT)^{13}$ studies with GAUSSIAN 09 program¹⁴ have been performed. Working within the framework of first-principles DFT, the free energies were determined using the B3LYP hybrid functional. The 6-311++G (2d,p) basis set¹⁵ was chosen to describe H, C, O, Cl, and Br atoms and the effective core potential of Hay and Wadt¹⁶ with double- ζ valence basis set (LANL2DZ) was used for the palladium (Pd). The structure of the molecules was optimized in *N*,*N*-dimethylformamide-water (DMF-H₂O) binary solvent *via* direct inversion in iterative subspace (DIIS), as implemented in the GAUSSIAN 09 program, until the largest component of the ionic forces attained a value 0.00045 a.u.. In order to confirm it as local minima, frequency calculations were performed at the same level of the theory. The polarisable continuum model (PCM)¹⁷ using the integral equation formalism variant (IEFPCM) was employed to investigate the effect of the solvent. The solvent descriptors were assumed to vary linearly with the molar fraction of each component of the homogeneous mixture (binary solvent).

The free energies for the optimized structures in binary solvent are given in Table S2 of the supplementary data. Then, the relative free energies (G°_{rel}) were computed, based on stoichiometric considerations. The free energy of the starting material 1-(bromoethyl)benzene **1a** was arbitrarily taken as zero and the energy of other intermediate molecules and complexes in figure 5 (main text) was normalized to **1a**. The free energy of Pd-carbene complex with different ligands in figure S12 was normalized to A ($G^{\circ}_{A} = 0.0$).

Figure S12. Optimized geometries and their Relative Gibbs Free energy (G°_{rel}) profile diagram of Pd-carbene complexes, showing relative stability of Pd-carbene complex with different ligands. G°_{rel} calculated w.r.t. A ($G^{\circ}_{A} = 0.0$) in binary solvent DMF-H₂O.

Sl. No.	Comp.	Optimized geometry	Structure
1	1a		BrH
2	3 a		
3	3a'		
4	I		T
5	II		Pd

 Table S2. Optimized molecular geometries

9	VI	Pd-Br PhH
10	А	Pd
11	В	P P
12	С	Pd Ph

Table S3. Free energies for the optimized structures in binary solvent

			Binary Solv	ent (DMF-H ₂ O)
CI NO	Structure/Commonied Mo	Co	Relative Gib Energ	bs Free v
.0V1.1C		(a.u.)	(a.u.)	(kJ. mol ⁻¹)
			Data for figure 5	
1	1a	-2884.406693	0.0	0.0
2	Ι	-310.217757	$ \{ G_{l} - (G_{la} - G_{Br}) \} = \\ [(-310.217757) - \{(-2884.406693) - (-2574.119103) \}] = \\ 0.069833 $	183.35
3	П	-746.004891	$ \begin{array}{l} \{G_{II} - (G_{Ia} \ \text{-}G_{HBr} + G_{pd} + G_{syrene})\} = \\ [(-746.008200) - \{(-2884.406693\) \\ -(-2574.764920) + (-126.724511) \\ + (-309.641916)\}] = \\ 0.003309 \end{array} $	8.69
4	Ш	-1437.897323	$ \begin{array}{l} \{G_{III} - (G_{Ia} + G_{pd} - G_{HBr} + G_{phCl} + \\ G_{styrene})\} = \\ [(-1437.897323) - \{(-2884.406693\) \\ + (-126.724511) - (-2574.764920) + \\ (-691.885164) + (-309.641916)\}] = \\ -0.003959 \end{array} $	-10.39
5	IV	-1437.958018	{G _{IV} - (as above)} = {(-1437.958018) - ()} = -0.064654	-169.75
6	IVa	-1437.952824	{G _{IVa} - (as above)} = {(-1437.952824) - ()} = -0.05946	-156.11
7	IV	-3320.835476	$ \{G_{VI} - (G_{1a} + G_{pd} + G_{syrene})\} = \\ [(-3320.835476) - \{(-2884.406693) + (-126.724511) + (-309.641916)\}] $	-163.72

	-42.78	-15.83		0.0	-5.49	27.81	37.02	-10.09		ı	ı		
= -0.062356	$ \{ G_{3a} - (G_{1a} + G_{phCl} - G_{HCl} - G_{HBr}) \} = \\ [(-540.693233) - \{ (-2884.406693) + (-691.885164) - (-460.850000) - (-2574.764920) \}] = \\ -0.016296 $	G_{3a} : - (-as above)}= $\{(540.682965) - ()\}=$ -0.006028	Data for figure S12	0.0	$\begin{array}{l} \{G_B - (G_A + G_{vinylnaphthalene})\} = \\ [(-899.645431) - \{(-436.359133) + \\ (-463.284205)\}] = \\ -0.002093 \end{array}$	$\{G_{C} - (G_{A} + (2 \times G_{styrene})\} = [(-1055.632373) - \{(-436.359133) + 2 \times (-309.641916)\}] = -0.010592$	$\{G_D - (G_A + 2 \times G_{vinyInaphthalenc})\} = \\[(-1362.913444) - \{(-436.359133) + 2 \times (-463.284205)\}] = \\0.014099$	$\{G_{II} - (G_A + G_{syrene})\} = \\ [(-746.004891) - \{(-436.359133) + (-309.641916)\}] = \\ -0.003842$	Others				
	-540.693233	-540.682965		-436.359133	-899.645431	-1055.632373	-1362.913444	-746.004891		-691.885164	-2574.764920	-460.850000	-2574.119103
	Trans-Stilbene (3a)	1,1-diphenyl ethane (3a')		Α	B	C	Q	П		Chlorobenzene	HBr	HCI	Bromine atom
	ø	6		10	11	12	13	14		15	16	17	18

•	I	ı
-126.724511	-309.641916	-463.284205
Palladium atom	Styrene	2-Vinyl naphthalene
19	20	21

Figure S13. Optimized molecular geometry of 1a by DFT at B3LYP

Table S4. X,	Y, Z - C	ordinates	of optimiz	zed comp	ound 1a	calculated	l by DFT	at B3	LYP

Center Number	Atomic Number	Atomic Type	Co X	oordinates (i Y	Angstroms) Z
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	6 6 6 6 1 1 1 1 1 1 6 1 6 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.802593 1.488852 0.706524 1.267736 2.578394 3.350644 3.396234 1.066215 0.679083 2.999359 4.372903 -0.691495 -0.872069 -1.137567 -2.158688 -0.478791 -1.084260	-0.892344 -0.605472 0.250853 0.813102 0.524680 -0.328465 -1.554659 -1.047512 1.472919 0.966891 -0.550793 0.559686 0.162443 2.003838 2.119774 2.611790 2.386544	0.769104 1.126005 0.346202 -0.805117 -1.164713 -0.378653 1.387672 2.021408 -1.430399 -2.059737 -0.660174 0.781079 1.774858 0.683914 1.045454 1.311586 -0.334940
18	35	0	-2.003259	-0.586362	-0.320076

Figure S14. Optimized molecular geometry of **3a** by DFT at B3LYP

Table S5. X, Y, Z-Cordinates of optimized compound 3a calculated by DFT at B3LY.
--

Center	Atomic	Atomic	Coordi	inates (Angst	 croms)
Number	Number	Туре	Х	Y	Z
1	6	0	4.199418	-1.085732	0.000026
2	6	0	2.821944	-1.274759	0.000047
3	6	0	1.935800	-0.185738	0.000023
4	6	0	2.487441	1.107374	-0.000024
5	6	0	3.861828	1.296189	-0.000046
6	6	0	4.727223	0.201646	-0.000018
7	1	0	4.859874	-1.944899	0.000046
8	1	0	2.419608	-2.281943	0.000084
9	1	0	1.839292	1.974960	-0.000041
10	1	0	4.263281	2.302848	-0.000078
11	1	0	5.799816	0.353865	-0.000032
12	6	0	0.495582	-0.453547	0.000046
13	1	0	0.240719	-1.509532	0.000123
14	6	0	-0.495588	0.453563	-0.000028
15	1	0	-0.240745	1.509551	-0.000100
16	6	0	-1.935801	0.185733	-0.000021
17	6	0	-2.821958	1.274763	0.000036
18	6	0	-2.487426	-1.107366	-0.000068
19	6	0	-4.199417	1.085731	0.000054
20	1	0	-2.419614	2.281944	0.000065
21	6	0	-3.861827	-1.296191	-0.000044
22	1	0	-1.839283	-1.974959	-0.000131
23	6	0	-4.727219	-0.201664	0.000018
24	1	0	-4.859890	1.944884	0.000098
25	1	0	-4.263253	-2.302861	-0.000081
26	1	0	-5.799814	-0.353872	0.000033

Figure S15. Optimized molecular geometry of **3a'** by DFT at B3LYP

Table S6. X	, Y, Z	Z-Cordinates	of optimize	ed compour	nd 3a' ca	alculated by	DFT	at B3L	YP

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	3.598324	0.120302	-0.634897	
2	6	0	2.389887	0.805176	-0.707683	
3	6	0	1.279928	0.388271	0.037961	
4	6	0	1.414920	-0.747741	0.847102	
5	6	0	2.624320	-1.429032	0.925896	
6	6	0	3.721805	-0.998034	0.184859	
7	1	0	4.441821	0.456046	-1.226666	
8	1	0	2.298924	1.663513	-1.362245	
9	1	0	0.569142	-1.092992	1.429305	
10	1	0	2.709664	-2.298238	1.567429	
11	1	0	4.662137	-1.533350	0.240321	
12	6	0	-0.000017	1.149602	0.000041	
13	6	0	-0.000059	2.489813	0.000053	
14	1	0	0.920737	3.055671	0.066311	
15	1	0	-0.920694	3.055903	-0.066102	
16	6	0	-1.279909	0.388100	-0.037875	
17	6	0	-2.390093	0.805389	0.707223	
18	6	0	-1.414690	-0.748183	-0.846610	
19	6	0	-3.598517	0.120520	0.634371	
20	1	0	-2.299387	1.664074	1.361367	
21	6	0	-2.624096	-1.429510	-0.925457	
22	1	0	-0.568820	-1.093720	-1.428505	
23	6	0	-3.721790	-0.998180	-0.184947	
24	1	0	-4.442205	0.456548	1.225711	
25	1	0	-2.709260	-2.298964	-1.566677	
26	1	0	-4.662139	-1.533455	-0.240472	

Figure S16. Optimized molecular geometry of styrene by DFT at B3LYP

Table S7. X, Y,	Z-Cordinates for	optimized	geometry	of styrene	calculated	by DFT at
B3LYP						

Center	Atomic	Atomic	C(V	ordinates (A	Angstroms)
		туре	^	۱ 	
1	6	0	5.503298	-0.407478	0.000141
2	6	0	6.893467	-0.461409	0.000478
3	6	0	7.635915	0.714930	-0.000119
4	6	0	6.975093	1.943741	-0.001052
5	6	0	5.588274	1.995818	-0.001383
6	6	0	4.823846	0.818517	-0.000786
7	1	0	4.930526	-1.328501	0.000607
8	1	0	7.395018	-1.421985	0.001196
9	1	0	8.718709	0.678356	0.000135
10	1	0	7.546091	2.864859	-0.001529
11	1	0	5.096832	2.961135	-0.002128
12	6	0	3.352653	0.813555	-0.001086
13	1	0	2.905766	-0.177678	-0.000751
14	6	0	2.535923	1.869218	-0.001697
15	1	0	2.895905	2.891578	-0.002043
16	1	0	1.461443	1.735605	-0.001864

Figure S17. Optimized molecular geometry of 2-vinylnaphthalene by DFT at B3LYP

Table S8. X, Y, Z-Cordinates of optimized 2-vinylnaphthalene molecule, calculated by DFT at B3LYP

Center	Atomic	Atomic	Ca	oordinates (Angstroms)
		туре	A	ı 	ے
1	6	0	3.236131	0.043126	0.00000
2	1	0	3.821136	0.959359	-0.000002
3	6	0	3.894036	-1.118271	0.00001
4	1	0	4.976557	-1.138272	0.00000
5	1	0	3.391795	-2.078776	0.00002
6	6	0	1.778816	0.250231	0.00000
7	6	0	1.289042	1.586410	0.00000
8	6	0	0.860704	-0.783061	0.00000
9	6	0	-0.053983	1.857140	0.00000
10	1	0	2.002457	2.403080	0.00000
11	6	0	-0.531395	-0.540799	0.00000
12	1	0	1.196482	-1.813715	-0.000001
13	6	0	-1.006070	0.807822	0.00000
14	1	0	-0.403377	2.883618	0.00000
15	6	0	-1.479607	-1.598753	0.00000
16	1	0	-1.121145	-2.622165	0.00000
17	6	0	-2.403534	1.045820	0.00000
18	1	0	-2.759680	2.070002	0.00000
19	6	0	-3.293027	0.000670	0.00000
20	1	0	-4.359081	0.193988	0.00000
21	6	0	-2.825515	-1.334779	0.00000
22	1	0	-3.538734	-2.150443	0.00000

Figure S18. Optimized molecular geometry of II by DFT at B3LYP

Table S9. X, Y,	, Z-Cordinates of o	ptimized intermediate I	I, calculated b	y DFT at B3LYP
-----------------	---------------------	-------------------------	-----------------	----------------

Center Number	Atomic Number	Atomic Type	Co	pordinates	(Angstroms) 7.
1	6	0	2.306880	0.810092	1.205375
2	6	0	1.597646	1.568113	0.288246
3	6	0	0.385627	1.098131	-0.267188
4	6	0	-0.070924	-0.170685	0.150086
5	6	0	0.634607	-0.928729	1.070898
6	6	0	1.827136	-0.439202	1.600343
7	1	0	3.234657	1.188017	1.617573
8	1	0	1.989405	2.533643	-0.001593
9	1	0	-0.999567	-0.537256	-0.272525
10	1	0	0.261534	-1.898310	1.377126
11	1	0	2.383563	-1.028722	2.319425
12	6	0	-0.404442	1.851600	-1.232950
13	6	0	0.121335	3.208711	-1.591936
14	1	0	0.232092	3.835767	-0.697405
15	1	0	1.123650	3.129706	-2.034098
16	1	0	-0.518629	3.730409	-2.298181
17	46	0	-2.081972	1.210814	-2.098074
18	6	0	-3.927998	0.091178	-2.853185
19	1	0	-3.484160	-0.790701	-3.306002
20	6	0	-3.812950	1.282267	-3.524921
21	1	0	-4.397021	2.155118	-3.259372
22	1	0	-3.335336	1.309501	-4.496549
23	6	0	-4.796660	-0.192941	-1.694713
24	6	0	-4.875893	-1.509423	-1.219127
25	6	0	-5.570133	0.787017	-1.053371
26	6	0	-5.691141	-1.838127	-0.141486
27	1	0	-4.288935	-2.282305	-1.703142
28	6	0	-6.385649	0.459078	0.021115
29	1	0	-5.534580	1.814488	-1.393555
30	6	0	-6.450545	-0.854658	0.484777
31	1	0	-5.734469	-2.863369	0.206905
32	1	0	-6.974825	1.231848	0.500919
33	1	0	-7.087560	-1.106417	1.324108

Figure S19. Optimized molecular geometry of IVa by DFT at B3LYP

Table S10.	Х, Ү,	, Z-Cordinates	of optimized	lintermediat	e IVa,	calculated by	DFT	at B3L	YP

Center	Atomic	Atomic	Coordinates (Angstroms)				
Number	Number	Туре	Х	Y	Ζ		
1	6	0	-1.334968	1.362203	0.000003		
2	6	0	0.015264	1.056374	0.000022		
3	6	0	0.461274	-0.294467	0.000018		
4	6	0	-0.539399	-1.306925	0.000011		
5	6	0	-1.884083	-0.989042	-0.000007		
6	6	0	-2.296555	0.348255	-0.000020		
7	1	0	-1.648047	2.400124	0.000005		
8	1	0	0.742455	1.858792	0.000036		
9	1	0	-0.228892	-2.346126	0.000014		
10	1	0	-2.623635	-1.781583	-0.000016		
11	1	0	-3.351168	0.595077	-0.000036		
12	6	0	1.828852	-0.644481	0.00006		
13	1	0	2.069443	-1.701969	0.000002		
14	6	0	2.958547	0.331297	-0.000020		
15	1	0	2.933337	0.989558	0.877192		
16	1	0	3.919641	-0.182734	-0.000060		
17	1	0	2.933274	0.989579	-0.877215		

Figure S20. Optimized molecular geometry of III by DFT at B3LYP

Table S11. A, Y, Z-Cordinates of optimized intermediate III , calculated by DFT at BS	S11. X, Y, Z-Cordinates of optimized intermediate III, calculated	by DFT	at B3LYI
---	--	--------	----------

Center	Atomic	Atomic	Co	oordinates (A	Angstroms)
Number	Number	Туре	Х	Y	Z
1	6	0	3.317367	2.965500	1.005594
2	6	0	2.902073	2.135226	-0.034572
3	6	0	1.544704	1.855944	-0.240548
4	6	0	0.619006	2.446989	0.635527
5	6	0	1.030519	3.281923	1.662912
6	6	0	2.386914	3.546190	1.857112
7	1	0	4.375118	3.159328	1.141300
8	1	0	3.652400	1.702579	-0.681741
9	1	0	-0.437158	2.247952	0.503014
10	1	0	0.291624	3.726745	2.319351
11	1	0	2.708991	4.195336	2.662510
12	6	0	1.108445	0.918528	-1.321741
13	6	0	2.151788	0.530692	-2.345761
14	1	0	2.628351	1.403770	-2.805072
15	1	0	2.925919	-0.068390	-1.862136
16	1	0	1.712612	-0.077313	-3.135010
17	6	0	-1.936589	-1.813922	0.361515
18	1	0	-1.433312	-2.119877	1.272752
19	6	0	-1.605918	-2.455301	-0.792825
20	1	0	-2.157092	-2.307710	-1.713740
21	1	0	-0.903764	-3.277183	-0.776933
22	6	0	-3.027951	-0.843924	0.559631
23	6	0	-3.245651	-0.336487	1.847822
24	6	0	-3.875157	-0.419541	-0.475053
25	6	0	-4.272485	0.566678	2.097941
26	1	0	-2.601865	-0.657377	2.659053
27	6	0	-4.898989	0.483477	-0.225609
28	1	0	-3.737705	-0.796202	-1.480983
29	6	0	-5.102797	0.981040	1.061238
30	1	0	-4.424210	0.945227	3.101658

31	1	0	-5.544168	0.799587	-1.036595
32	1	0	-5.904471	1.684240	1.251966
33	46	0	-0.148047	-0.611608	-0.725904
34	17	0	-0.308127	1.767865	-2.312767
35	6	0	1.355613	-1.571493	0.204050
36	6	0	2.047752	-2.602104	-0.438211
37	6	0	1.678531	-1.272826	1.529778
38	6	0	3.035361	-3.323439	0.234766
39	1	0	1.827217	-2.853899	-1.469310
40	6	0	2.662848	-1.997896	2.203574
41	1	0	1.171035	-0.468560	2.049907
42	6	0	3.345857	-3.025398	1.558753
43	1	0	3.561485	-4.119328	-0.281517
44	1	0	2.896798	-1.752465	3.234013
45	1	0	4.113057	-3.585314	2.080773

Figure S21. Optimized molecular geometry of IV by DFT at B3LYP

Table S12. X,	Y, Z-C	Cordinates of o	ptimized	intermediate I	[V , ca	alculated b	y DFT	at B3LYP

Center Number	Atomic Number	Atomic Type	Cc X	pordinates Y	(Angstroms) Z
1	46	0	0.025095	-1.990231	-0.323930
2	6	0	2.058171	-2.040129	0.694814
3	1	0	2.436316	-2.883724	0.122819
4	6	0	1.039990	-2.285998	1.599020
5	1	0	0.737909	-3.305805	1.808141
6	1	0	0.752229	-1.551576	2.339058
7	6	0	2.895788	-0.832349	0.611332
8	6	0	3.738139	-0.665741	-0.497804
9	6	0	2.929381	0.135240	1.625148
10	6	0	4.570811	0.440425	-0.601729
11	1	0	3.733288	-1.412268	-1.283919

12	6	0	3.765033	1.240853	1.521844
13	1	0	2.320837	0.015234	2.512520
14	6	0	4.585576	1.400028	0.408000
15	1	0	5.211776	0.552671	-1.467818
16	1	0	3.782865	1.975039	2.318300
17	1	0	5.238654	2.260958	0.331975
18	6	0	-0.488533	-0.019907	0.095358
19	6	0	-1.845169	-0.117695	0.682314
20	6	0	-1.996899	-0.038969	2.077161
21	6	0	-3.002315	-0.269883	-0.099715
22	6	0	-3.251476	-0.104148	2.668251
23	1	0	-1.120096	0.092803	2.700429
24	6	0	-4.255944	-0.338214	0.491337
25	1	0	-2.913750	-0.360811	-1.173775
26	6	0	-4.387205	-0.256334	1.876673
27	1	0	-3.344219	-0.032772	3.745304
28	1	0	-5.135765	-0.458352	-0.129541
29	1	0	-5.367464	-0.310288	2.334800
30	17	0	-1.196014	-2.326118	-2.441834
31	6	0	-0.283444	0.798651	-1.178884
32	1	0	0.721759	0.603082	-1.557886
33	1	0	-0.982467	0.487922	-1.952163
34	1	0	0.240159	0.268361	0.849912
35	6	0	-0.432286	2.288881	-0.913487
36	6	0	-1.607046	2.962790	-1.255093
37	6	0	0.604207	3.015833	-0.321168
38	6	0	-1.744140	4.327320	-1.013401
39	1	0	-2.420316	2.418682	-1.721516
40	6	0	0.470487	4.379203	-0.076343
41	1	0	1.527737	2.513297	-0.055701
42	6	0	-0.705986	5.040177	-0.420784
43	1	0	-2.661499	4.832982	-1.291646
44	1	0	1.287546	4.926769	0.378921
45	1	0	-0.810469	6.102242	-0.233328

Figure S22. Optimized molecular geometry of IVa by DFT at B3LYP

Table S13. X, Y, Z-Cordinates of optimized intermediate IVa, calculated by DFT at B3LYP

Center Number	Atomic Number	Atomic Type	Cc X	oordinates (2 Y	Angstroms) Z
1	6	0	2.100984	2.965340	-0.754205
2	6	0	1.429052	1.955514	-0.075767
3	6	0	0.050075	2.035980	0.156784
4	6	0	-0.625833	3.182268	-0.288513
5	6	0	0.048121	4.197310	-0.958367
6	6	0	1.414003	4.090971	-1.200494
7	1	0	3.165574	2.872685	-0.932015
8	1	0	1.981255	1.090641	0.264359
9	1	0	-1.684345	3.293110	-0.091474
10	1	0	-0.496328	5.075867	-1.283730
11	1	0	1.939399	4.880286	-1.724495
12	6	0	-0.174223	0.898466	2.389467
13	1	0	0.909769	0.787871	2.414170
14	1	0	-0.408981	1.828293	2.920741
15	1	0	-0.618687	0.070282	2.937887
16	46	0	-0.728118	-0.867842	-0.146850
17	6	0	1.310266	-2.186907	0.201595
18	1	0	1.114741	-2.793325	-0.675799
19	6	0	0.427709	-2.282888	1.242377
20	1	0	-0.347714	-3.037966	1.226573
21	1	0	0.620487	-1.810304	2.195830
22	6	0	2.611124	-1.502786	0.205442
23	6	0	3.283733	-1.322364	-1.011906
24	6	0	3.236248	-1.066330	1.382824
25	6	0	4.525263	-0.700984	-1.057070
26	1	0	2.820320	-1.667476	-1.929165
27	6	0	4.478368	-0.446633	1.337614
28	1	0	2.760462	-1.227548	2.341973
29	6	0	5.125537	-0.256420	0.118080
30	1	0	5.025497	-0.565070	-2.008361
31	1	0	4.948140	-0.118956	2.257216
32	1	0	6.095168	0.225562	0.086239
33	6	0	-0.667946	0.992026	0.961595
34	6	0	-2.077845	0.757513	0.681091
35	6	0	-3.042321	0.423141	1.672689
36	6	0	-2.473341	0.668236	-0.687776
37	6	0	-4.318655	0.062535	1.315189
38	1	0	-2.775578	0.483820	2.718861
39	6	0	-3.779498	0.269097	-1.027197
40	1	0	-1.828760	1.054966	-1.466898
41	6	0	-4.692362	-0.025789	-0.040714
42	1	0	-5.047514	-0.159013	2.085339
43	1	0	-4.062237	0.219505	-2.070985
44	1	0	-5.703135	-0.314711	-0.301099
45	17	0	-1.414402	-2.735974	-1.740380

Figure S23. Optimized molecular geometry of VI by DFT at B3LYP

Table S14. X, Y, Z	 Cordinates of optim 	nized intermediate V	I , calculated by	DFT at B3LYP
	1		, , , , , , , , , , , , , , , , , , , ,	

Center	Atomic	Atomic	C(pordinates (.	Angstroms)
Number	Number	Туре	X	¥	Ľ
1	6	0	1.916239	-0.315202	0.961483
2	6	0	0.820134	0.528499	0.828334
3	6	0	-0.098049	0.356494	-0.219688
4	6	0	0.117618	-0.704187	-1.117910
5	6	0	1.207094	-1.550927	-0.980131
6	6	0	2.114878	-1.356747	0.059752
7	1	0	2.620747	-0.155364	1.769049
8	1	0	0.697361	1.343877	1.529568
9	1	0	-0.576471	-0.848323	-1.938103
10	1	0	1.356359	-2.357342	-1.688114
11	1	0	2.971829	-2.011284	0.164104
12	6	0	-1.153653	2.678925	0.137551
13	1	0	-1.077476	2.671954	1.224556
14	1	0	-0.274488	3.209330	-0.251388
15	1	0	-2.032980	3.259889	-0.140265
16	46	0	-3.076312	0.503740	0.056767
17	6	0	-3.016572	-0.916450	1.869151
18	1	0	-4.090439	-1.085755	1.796418
19	6	0	-2.604526	0.340527	2.247103
20	1	0	-3.325643	1.064757	2.606376
21	1	0	-1.567028	0.543744	2.473138
22	6	0	-2.213182	-2.142278	1.781505
23	6	0	-2.751859	-3.261503	1.128235
24	6	0	-0.957686	-2.263057	2.390816
25	6	0	-2.047951	-4.455951	1.064497
26	1	0	-3.729806	-3.186286	0.666264
27	6	0	-0.256625	-3.460380	2.331853
28	1	0	-0.535222	-1.425719	2.930164
29	6	0	-0.795499	-4.558819	1.666478

30	1	0	-2.477106	-5.308580	0.552209
31	1	0	0.710401	-3.539727	2.813472
32	1	0	-0.247596	-5.492591	1.626278
33	35	0	-4.123518	1.091505	-2.211160
34	6	0	-1.204511	1.297172	-0.474770
35	1	0	-1.418626	1.344605	-1.539342

Figure S24. Optimized molecular geometry of A by DFT at B3LYP

Center	Atomic	Atomic	Co	pordinates (A	Angstroms)
Number	Number	Type	X	Y	Z
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	6 6 6 6 1 1 1 1 1 6 6 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.552830 1.252851 0.974488 2.073857 3.374850 3.619848 2.738501 0.409856 1.912642 4.201828 4.637087 -0.415953 -0.605341 -0.246270 -0.021227	-1.559456 -1.079056 0.299766 1.176482 0.696035 -0.672282 -2.623773 -1.754706 2.243175 1.387845 -1.044763 0.765915 2.254265 2.729557 2.689360	-0.105046 -0.125932 -0.033204 0.089587 0.129046 0.027999 -0.185236 -0.217496 0.166487 0.236142 0.054529 -0.064111 -0.153721 0.769723 -0.974591
16	1	0	-1.647519	2.531111	-0.282499
17	46	0	-1.933684	-0.379300	0.040114

Figure S25. Optimized molecular geometry of **B** by DFT at B3LYP

Table S16. X, Y, Z	-Cordinates of optimized	l intermediate B,	, calculated by DF	Γ at B3LYP
---------------------------	--------------------------	-------------------	--------------------	------------

Center	Atomic	Atomic	C	oordinates (Angstroms)
Number	Number	Туре	Х	Y	Z
1	 6	0	1.971100	0.938637	1.570821
2	6	0	1.481732	1.554445	0.430590
3	6	0	0.305085	1.092447	-0.202110
4	6	0	-0.349156	-0.017572	0.374409
5	6	0	0.137813	-0.634257	1.515836
6	6	0	1.301081	-0.156775	2.116665
7	1	0	2.875161	1.307951	2.039647
8	1	0	2.018553	2.401875	0.026402
9	1	0	-1.252516	-0.377107	-0.105268
10	1	0	-0.383028	-1.484286	1.939181
11	1	0	1.686668	-0.635974	3.008820
12	6	0	-0.257785	1.701178	-1.401027
13	6	0	0.480092	2.889574	-1.939630
14	1	0	0.541401	3.683070	-1.182837
15	1	0	1.516663	2.625902	-2.188292
16	1	0	0.012402	3.302959	-2.828929
17	46	0	-1.867663	1.042795	-2.375684
18	6	0	-3.667917	-0.043523	-3.266886
19	1	0	-3.286261	-1.051196	-3.401230
20	6	0	-3.243714	0.924037	-4.143609
21	1	0	-3.724672	1.892376	-4.213944
22	1	0	-2.594284	0.657209	-4.967927
23	6	0	-4.765788	0.066781	-2.287515
24	6	0	-5.069804	-1.073275	-1.490486
25	6	0	-5.528495	1.207170	-2.116242
26	6	0	-6.084195	-1.053626	-0.570930
27	1	0	-4.479765	-1.973462	-1.621747
28	6	0	-6.582289	1.262155	-1.175924
29	1	0	-5.330627	2.092217	-2.709507
30	6	0	-6.871694	0.109591	-0.381112
31	1	0	-6.297753	-1.935049	0.023548
32	6	0	-7.369378	2.430609	-0.994874
33	1	0	-7.151892	3.306020	-1.596783
34	6	0	-7.930604	0.168748	0.558559

35	1	0	-8.147079	-0.708078	1.158823
36	6	0	-8.672098	1.314362	0.709344
37	1	0	-9.479439	1.348699	1.431071
38	6	0	-8.387774	2.456069	-0.075890
39	1	0	-8.980385	3.354065	0.052527

Figure S26. Optimized molecular geometry of C by DFT at B3LYP

Center Number	Atomic Number	Atomic Type	Co X	oordinates (Y	Angstroms) Z
1	6	0	-5.712975	-1.061454	-0.120214
2	6	0	-4.493433	-1.592581	0.272183
3	6	0	-3.284104	-0.903776	0.032661
4	6	0	-3.367796	0.342660	-0.621940
5	6	0	-4.584741	0.875504	-1.015850
6	6	0	-5.762852	0.173331	-0.765308
7	1	0	-6.628137	-1.607421	0.075229
8	1	0	-4.482235	-2.551924	0.771568
9	1	0	-2.445236	0.877555	-0.813047
10	1	0	-4.620677	1.834657	-1.517989
11	1	0	-6.716765	0.586218	-1.071636
12	6	0	-1.972607	-1.417573	0.425642
13	6	0	-1.970840	-2.761291	1.092415
14	1	0	-2.584065	-2.749642	2.002935
15	1	0	-2.415308	-3.521684	0.437028
16	1	0	-0.969803	-3.088810	1.362618
17	46	0	-0.226664	-0.482979	0.180987
18	6	0	1.564525	-0.513798	-1.346420
19	1	0	1.763052	0.531980	-1.552796

Table S17. X	Y Z-Cordinates	f optimized intermedi	iate C , calculated b	v DFT at B3LYP
I abit bi / · / ·	1, Z-Corumatos	i optimized internied	ale C, calculated D	

20	6	0	0.415519	-1.074309	-1.881643
21	1	0	0.306741	-2.146823	-1.980904
22	1	0	-0.219357	-0.479094	-2.525725
23	6	0	1.057528	1.072211	1.399917
24	1	0	2.026528	0.596017	1.499605
25	6	0	0.004443	0.562667	2.143820
26	1	0	0.186352	-0.246595	2.839979
27	1	0	-0.887247	1.147102	2.331561
28	6	0	1.077587	2.391974	0.749123
29	6	0	2.304206	2.938514	0.339997
30	6	0	-0.080494	3.159341	0.535938
31	6	0	2.374817	4.191950	-0.258286
32	1	0	3.214548	2.373031	0.504058
33	6	0	-0.010192	4.411060	-0.061240
34	1	0	-1.046678	2.770592	0.832457
35	6	0	1.217046	4.936875	-0.464038
36	1	0	3.337239	4.588298	-0.561047
37	1	0	-0.919334	4.981011	-0.215578
38	1	0	1.268136	5.913623	-0.929945
39	6	0	2.708424	-1.271385	-0.813102
40	6	0	3.949552	-0.632023	-0.668890
41	6	0	2.630104	-2.629292	-0.459138
42	6	0	5.064129	-1.313837	-0.192193
43	1	0	4.040236	0.412381	-0.945373
44	6	0	3.742903	-3.310458	0.016022
45	1	0	1.687086	-3.154725	-0.545962
46	6	0	4.968106	-2.658522	0.154169
47	1	0	6.009988	-0.793434	-0.094472
48	1	0	3.654382	-4.357159	0.283954
49	1	0	5.833983	-3.192831	0.526317

Figure S27. Optimized molecular geometry of **D** by DFT at B3LYP

Center	Atomic	Atomic	Coord	inates (Angst	troms)
Number	Number	Type	Х	Y	Z
1	6	0	3.151963	5.458690	-0.179347
2	6	0	1.920538	4.911323	0.147622
3	6	0	1.676806	3.526739	0.012753
4	6	0	2.734524	2.725928	-0.465672
5	6	0	3 966881	3 269761	-0 790267
6	6	0	4 178654	4 640421	-0 648288
0 7	1	0	3 316216	6 523893	-0.069462
2	1	0	1 1/0730	5 567458	0.000402
0	1	0	2 555606	1 662907	0.509941
9	1	0	2.555696	1.662697	-0.574347
1 U	1	0	4.763UI6	2.632220	-1.155009
		0	5.140179	5.070472	-0.902/36
12	6	0	0.397797	2.899401	0.338834
13	6	0	-0.667975	3.815824	0.860747
14	1	0	-0.327639	4.347705	1.758557
15	1	0	-0.906257	4.591021	0.120653
16	1	0	-1.586328	3.287611	1.105042
17	46	0	-0.030679	0.959961	0.157011
18	6	0	-1.117831	-0.402830	-1.429002
19	1	0	-0.459988	-1.255281	-1.555343
20	6	0	-0.717508	0.809845	-1.968272
21	1	0	-1.428688	1.604647	-2.153813
22	1	0	0.200611	0.862060	-2.539668
23	6	0	0.192908	-0.964967	1.494528
24	1	0	-0.807228	-1.382040	1.528538
25	6	0	0.432793	0.201471	2.205736
26	1	0	-0.354848	0.622495	2.818072
27	-	0	1 438507	0 504044	2 468232
28	-	0	1 225804	-1 869576	0 967144
29	6	0	0 834413	-3 169381	0 532978
30	6	0	2 568792	-1 539977	0.891927
31	6	0	1 7/3035	-1 072615	0.051387
22	1	0	-0.211504	-4.072013	0.031307
22	I G	0	-0.211J04 2 52//17	-3.440202	0.390713
22	0	0	2.000500	-2.44/2JI	1 200626
34		0	2.900399	-0.301210	1.209020
35	0	0	3.120/25	-3./45294	-0.034720
36		0	1.41/214	-5.056358	-0.26/839
37	6	0	-2.483224	-0.728753	-0.988367
38	6	0	-2.830420	-2.098305	-0.803/82
39	6	0	-3.463750	0.223165	-0.764616
40	6	0	-4.088584	-2.476661	-0.417074
41	1	0	-2.076458	-2.855383	-0.986464
42	6	0	-4.771736	-0.131698	-0.363482
43	1	0	-3.237476	1.276346	-0.883927
44	6	0	-5.100054	-1.511542	-0.182508
45	1	0	-4.325483	-3.527248	-0.288684
46	6	0	4.912863	-2.112170	0.318945
47	1	0	5.231591	-1.128902	0.647300
48	6	0	4.091874	-4.651033	-0.528075
49	1	0	3.771375	-5.634203	-0.855318
50	6	0	5.416917	-4.295355	-0.592423
51	1	0	6.151253	-4.995997	-0.971585

Table S18. X, Y, Z-Cordinates of optimized intermediate D, calculated by DFT at B3LYP

52	6	0	5.829639	-3.012258	-0.163613
53	1	0	6.877668	-2.741969	-0.218341
54	6	0	-5.779406	0.842341	-0.129341
55	1	0	-5.534820	1.890199	-0.265049
56	6	0	-6.412011	-1.862364	0.221046
57	1	0	-6.654682	-2.910843	0.356137
58	6	0	-7.362964	-0.895672	0.438692
59	1	0	-8.363237	-1.175215	0.747286
60	6	0	-7.041352	0.470266	0.260943
61	1	0	-7.799347	1.224832	0.435505

12. References:

- Denton, R. M.; An, J.; Adeniran, B.; Blake, A. J.; Lewis, W.; Poulton, A. M. J. Org. Chem. 2011, 76, 6749.
- (2) Bull, S. D.; Davies, S. G.; Epstein, S. W.; Garner, A. C.; Mujtaba, N.; Roberts, P. M.;
 Savory, E. D.; Smith, A. D.; Tamayo, J. A.; Watkin, D. J. *Tetrahedron* 2006, *62*, 7911.
- (3) Hajipour, A. R.; Zarei, A.; Ruoho, A. E. Synthetic Communications 2006, 36, 1039.
- (4) Wyatt, P.; Eley, H.; Charmant, J.; Daniel, B. J.; Kantacha, A. *Eur. J. Org. Chem.* **2003**, *2003*, 4216.
- (5) Soni, R.; Jolley, K. E.; Clarkson, G. J.; Wills, M. Org. Lett. 2013, 15, 5110.
- (6) Schabel, T.; Belger, C.; Plietker, B. Org. Lett. 2013, 15, 2858.
- (7) Ilies, L.; Yoshida, T.; Nakamura, E. J. Am. Chem. Soc. 2012, 134, 16951.
- (8) Söderman, S. C.; Schwan, A. L. J. Org. Chem. 2012, 77, 10978.
- (9) Moncomble, A.; Floch, P. L.; Lledos, A.; Gosmini, C. J. Org. Chem. 2012, 77, 5056.
- (10) Mochida, S.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem. 2011, 76, 3024.
- (11) Sheldrick, G. M. ActaCryst. 2008, A64, 112.
- (12) Farrugia, L. J. J. Appl. Cryst. 1999, 32, 837.
- (13) (a) Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, 864. (b) Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, 1133.
- (14) Gaussian 09, Revision C.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.;

Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa,
J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.
A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.;
Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.
C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, M. J.; Klene, M.; Knox, J. E.;
Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.;
Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.;
Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.;
Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.;
Fox, D. J., Gaussian, Inc., Wallingford CT, 2010.

- (15) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, 37, 785.
- (16) Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270.
- (17) Tomasi, J.; Mennucci, B.; Cammi. R. Chem. Rev. 2005, 105, 2999.