Supporting information

Synthesis of chiral N^{β} -protected amino diselenides from the corresponding amino alkyl iodides using NaBH₂Se₃ as a selenating reagent and their conversion to seleninic acids

Nageswara Rao Panguluri, Veladi Panduranga, Girish Prabhu, Vishwanatha TM &

Vommina V Sureshbabu

109, Peptide Research Laboratory, Department of Studies in Chemistry, Central College Campus, Bangalore University, Dr. B. R. Ambedkar Veedhi, Bangalore-560 001, India

Email: hariccb@gmail.com; hariccb@hotmail.com; sureshbabuvommina@rediffmail.com;

Table of contents in supporting information

S4	General information & Experimental Section
\$5	Characterization data of the synthesized compounds
S12	HRMS, ¹ H NMR of Boc-Val-CH ₂ -Se-) ₂ , 2a
S13	¹³ C NMR, ⁷⁷ Se NMR of Boc-Val-CH ₂ -Se-) ₂ , 2a
S14	HRMS, ¹ H NMR of Boc-Leu-CH ₂ -Se-) ₂ , 2b
S15	¹³ C NMR, ⁷⁷ Se NMR of Boc-Leu-CH ₂ -Se-) ₂ , 2b
S16	ESI-MS, ¹ H NMR of Boc-Phe-CH ₂ -Se-) ₂ , 2c
S17	¹³ C NMR, ⁷⁷ Se NMR of Boc-Phe-CH ₂ -Se-) ₂ , 2c
S18	ESI-MS, ¹³ C NMR of Boc-Phg-CH ₂ -Se-) ₂ , 2d
S19	⁷⁷ Se NMR of Boc-Phg-CH ₂ -Se-) ₂ , 2d
S20	ESI-MS of Cbz-Ala-CH ₂ -Se-) ₂ , 2e
S21	¹ H NMR, ¹³ C NMR of Cbz-Ala-CH ₂ -Se-) ₂ , 2e
S22	⁷⁷ Se NMR of Cbz-Ala-CH ₂ -Se-) ₂ , 2e
S22	
S23	¹ H NMR, ¹³ C NMR of Cbz-Val-CH ₂ -Se-) ₂ , 2f

S24 ⁷⁷ Se NMR of Cbz-Val-CH ₂ -Se-) ₂ , 2f
S25 ESI-MS of Cbz-Phe-CH ₂ -Se-) ₂ , 2g
S26 ¹ H NMR, ¹³ C NMR of Cbz-Phe-CH ₂ -Se-) ₂ , 2g
S27 ⁷⁷ Se NMR of Cbz-Phe-CH ₂ -Se-) ₂ , 2g
S27 ESI-MS of Fmoc-Phe-CH ₂ -Se-) ₂ , 2h
S28 ¹ H NMR, ¹³ C NMR of Fmoc-Phe-CH ₂ -Se-) ₂ , 2h
S29 ⁷⁷ Se NMR of Fmoc-Phe-CH ₂ -Se-) ₂ , 2h
S29 ESI-MS of Fmoc-Ile-CH ₂ -Se-) ₂ , 2i
S30 ¹ H NMR, ¹³ C NMR of Fmoc-Ile-CH ₂ -Se-) ₂ , 2i
S31 ⁷⁷ Se NMR of Fmoc-Ile-CH ₂ -Se-) ₂ , 2i
S31 ESI-MS of Fmoc-Leu-CH ₂ -Se-) ₂ , 2j
S32 ¹ H NMR, ¹³ C NMR of Fmoc-Leu-CH ₂ -Se-) ₂ , 2j
S33 ⁷⁷ Se NMR of Fmoc-Leu-CH ₂ -Se-) ₂ , 2j
S33 ESI-MS of Boc-L-Sec-OMe, 5a
S34 ¹³ C NMR, ⁷⁷ Se NMR of Boc-L-Sec-OMe, 5a
S35 ESI-MS, ¹ H NMR of Cbz-L-Sec-OMe, 5b
S36 ¹³ C NMR of Cbz-L-Sec-OMe, 5b
S36 ESI-MS of Fmoc-L-Sec-OMe, 5c
S37 ¹³ C NMR, ⁷⁷ Se NMR of Fmoc-L-Sec-OMe, 5c
S38 ESI-MS, ¹ H NMR of Boc-Val-CH ₂ -SeO ₂ H, 6a
S39 ¹³ C NMR, ⁷⁷ Se NMR of Boc-Val-CH ₂ -SeO ₂ H, 6a
S40 ESI-MS, ¹ H NMR of Boc-Leu-CH ₂ -SeO ₂ H, 6b
S41 ¹³ C NMR, ⁷⁷ Se NMR of Boc-Leu-CH ₂ -SeO ₂ H, 6b
S42 ESI-MS, ¹ H NMR of Boc-Phe-CH ₂ -SeO ₂ H, 6c
S43 ¹³ C NMR, ⁷⁷ Se NMR of Boc-Phe-CH ₂ -SeO ₂ H, 6c
S44 ESI-MS, ¹ H NMR of Boc-Phg-CH ₂ -SeO ₂ H, 6d
S45 ¹³ C NMR of Boc-Phg-CH ₂ -SeO ₂ H, 6d

S46 ESI-MS of Cbz-Ala-CH ₂ -SeO ₂ H, 6e
S47 ¹ H NMR, ¹³ C NMR of Cbz-Ala-CH ₂ -SeO ₂ H, 6e
S48 ⁷⁷ Se NMR of Cbz-Ala-CH ₂ -SeO ₂ H, 6e
S48 ESI-MS of Cbz-Val-CH ₂ -SeO ₂ H, 6f
S49 ¹ H NMR, ¹³ C NMR of Cbz-Val-CH ₂ -SeO ₂ H, 6f
S50 ⁷⁷ Se NMR of Cbz-Val-CH ₂ -SeO ₂ H, 6f
S50 ¹ H NMR of Cbz-Phe-CH ₂ -SeO ₂ H, 6g
S51 ¹³ C NMR of Cbz-Phe-CH ₂ -SeO ₂ H, 6g
S51 ESI-MS of Fmoc-Phe-CH ₂ -SeO ₂ H, 6h
S52 ¹³ C NMR, ⁷⁷ Se NMR of Fmoc-Phe-CH ₂ -SeO ₂ H, 6h
S53 ESI-MS, ¹ H NMR of Fmoc-Ile-CH ₂ -SeO ₂ H, 6i
S54 ⁷⁷ Se NMR of Fmoc-Ile-CH ₂ -SeO ₂ H, 6i
S55 Chiral HPLC of 2h, 2h* and mixture of 2h and 2h* (Figure 1)

General: All solvents were freshly distilled before use. Amino acids were used as received from Sigma-Aldrich Company. ¹H and ¹³C NMR spectra were recorded on a Bruker AMX 400 MHz and 100 MHz respectively, with CDCl₃ or DMSO- d_6 as an internal standard. Mass spectra were recorded using high resolution mass spectrometer (HRMS) Q-T of mass spectrometer. All the reactions were monitored using TLCs with precoated silica gel plates purchased from Merck. Column Chromatography was performed with Merck silica gel (100–200) at normal atmospheric pressure. Chiral HPLC analysis of isomers was carried out by Agilent 1100 series having G1311A VWD at $\lambda = 254$ nm, Phenominex made Lux, pore size-5 μ , Cellusole-1, diameter x length = 250 x 4.60 mm.

Experimental section

General procedure for the synthesis of N^{β} -protected amino diselenides 2, 5

To a solution of sodium borohydride (NaBH₄, 10 mmol) in dry THF, black selenium powder (30 mmol) was added at 0 °C under N₂ atmosphere. The consumption of selenium powder in less than 10 min lead to heterogeneous reddish suspension which indicated the formation of NaBH₂Se₃. To the resulting NaBH₂Se₃ suspension, a THF solution containing N^{α} protected amino alkyl iodide **1** or **4** (10 mmol) was added drop wise at 0 °C and the stirring was continued for another 20 min. After completion of the reaction (as monitored by TLC), the reaction mixture was filtered through celite, washed with THF and the solvent was removed under reduced pressure. The crude mass was diluted with EtOAc, washed with water (2 x 20 mL), brine (2 x 20 mL), dried over Na₂SO₄ and the solvent was removed under reduced pressure. The crude residue **2** or **5** was purified by column chromatography on silica gel with EtOAc/hexane (2:8).

General procedure for the synthesis of N^{β} -protected amino seleninic acids 6

To a solution of N^{β} -protected amino diselenide **2** (10 mmol) in DCM at 0 °C, 35% aqueous H₂O₂ (64 mmol) was added drop wise under vigorous stirring till the completion of reaction (monitored by TLC). The change in color from yellow to colorless indicated the complete consumption of diselenide. After 30 min, the desired product seleninic acid **6** was formed as white precipitate, which was filtered off and recrystalized using ethanol as a solvent. All seleninic acids were isolated as stable solids.

Characterization data of the synthesized compounds 2, 5, 6

Boc-Val-CH₂-Se-)₂, 2a: Yield: 94%; Grey solid; ¹H NMR (400 MHz, CDCl₃): δ 0.91 (d, *J* = 6.8 Hz, 3H), 0.93 (d, *J* = 6.8 Hz, 3H), 1.44 (s, 9H), 1.88-1.92 (m, 1H), 3.12-3.17 (m, 2H), 3.63-3.65 (m, 1H), 4.80 (bd, *J* = 9.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 18.17, 20.00, 28.90, 31.56, 35.06, 56.82, 79.63, 156.21; ⁷⁷Se NMR (76 MHz, CDCl₃): δ 281.02; HRMS, m/z: Calcd for C₂₀H₄₀N₂O₄Se₂Na (M + Na)⁺: 555.1216; found: 555.1213.

Boc-Leu-CH₂-Se-)₂, **2b:** Yield: 91%; Grey solid; ¹H NMR (400 MHz, CDCl₃): δ 0.93 (d, *J* = 8.8 Hz, 6H), 1.43 (s, 9H), 1.63-1.74 (m, 3H), 2.96-3.02 (m, 2H), 3.83-3.98 (m, 1H), 4.98 (bd, *J* = 9.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 23.54, 25.43, 28.91, 37.81, 43.51, 49.64, 79.59, 155.85; ⁷⁷Se NMR (76 MHz, CDCl₃): δ 281.35; HRMS, m/z: Calcd for C₂₂H₄₄N₂O₄Se₂Na (M + Na)⁺: 583.1529; found: 583.1299.

Boc-Phe-CH₂-Se-)₂, 2c: Yield: 95%; Grey solid; ¹H NMR (400 MHz, CDCl₃): δ 1.41 (s, 9H), 2.90-3.03 (m, 2H), 3.16-3.26 (m, 2H), 4.07-4.09 (m, 1H), 5.03 (bd, J = 9.0 Hz, 1H), 7.16-7.29 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 28.38, 34.92, 39.50, 52.14, 79.38, 128.48, 128.52, 129.38, 137.44, 155.18; ⁷⁷Se NMR (76 MHz, CDCl₃): δ 280.00; ESI-MS, m/z: Calcd for C₂₈H₄₀N₂O₄Se₂Na (M + Na)⁺: 651; found: 651.

Boc-Phg-CH₂-Se-)₂, **2d:** Yield: 93%; Pale yellow solid; ¹H NMR (400 MHz, CDCl₃): δ 1.42 (s, 9H), 3.31-3.38 (m, 2H), 4.90-4.95 (m, 1H), 5.25 (brs, 1H), 7.26-7.39 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 28.84, 30.14, 55.78, 80.23, 126.88, 128.11, 129.16, 141.56, 155.59; ⁷⁷Se NMR (76 MHz, CDCl₃): δ 301.91; ESI-MS, m/z: Calcd for C₂₆H₃₆N₂O₄Se₂Na (M + Na)⁺: 623; found: 623.

Cbz-Ala-CH₂-Se-)₂, 2e: Yield: 91%; Pale yellow solid; ¹H NMR (400 MHz, CDCl₃): δ 1.23 (d, J = 6.8 Hz, 3H), 2.99-3.04 (m, 2H), 3.97-4.00 (m, 1H), 5.06 (s, 2H), 5.15 (brs, 1H), 7.26-7.33 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 21.67, 36.66, 46.64, 65.63, 127.12, 127.47, 127.50, 135.46, 154.60; ⁷⁷Se NMR (76 MHz, CDCl₃): δ 288.53; ESI-MS, m/z: Calcd for C₂₂H₂₈N₂O₄Se₂Na (M + Na)⁺: 567.0277; found: 567.0271.

Cbz-Val-CH₂-Se-)₂, **2f:** Yield: 92%; Pale yellow solid; ¹H NMR (400 MHz, CDCl₃): δ 0.84 (d, *J* = 8.0 Hz, 3H), 0.86 (d, *J* = 8.0 Hz, 3H), 1.80-1.85 (m, 1H), 3.00-3.09 (m, 2H), 3.63-3.70 (m, 1H), 4.99 (s, 2H), 5.05 (bd, *J* = 12.4 Hz, 1H), 7.18-7.25 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 19.83, 19.94, 31.87, 34.85, 57.75, 67.14, 128.53, 128.57, 128.94, 137.04, 156.82; ⁷⁷Se NMR (76 MHz, CDCl₃): δ 277.13; HRMS, m/z: Calcd for C₂₆H₃₆N₂O₄Se₂Na (M + Na)⁺: 623.0903; found: 623.0914.

Cbz-Phe-CH₂-Se-)₂, 2g: Yield: 94; Red solid; ¹H NMR (400 MHz, CDCl₃): δ 2.89 (d, J = 5.6 Hz, 2H), 3.01 (d, J = 7.2 Hz, 1H), 3.13 (d, J = 10.8 Hz, 1H), 4.12-4.21 (m, 1H), 5.03 (s, 2H), 5.16 (brs, 1H), 7.15-7.32 (m, 10H); ¹³C NMR (100 MHz, CDCl₃): δ 34.94, 39.68, 52.79, 66.63, 126.69, 128.07, 128.45, 128.49, 128.59, 129.62, 136.48, 137.22, 155.75; ⁷⁷Se NMR (76 MHz, CDCl₃): δ 286.77; ESI-MS, m/z: Calcd for C₃₄H₃₇N₂O₄Se₂ (M + H)⁺: 697.1084; found: 697.1094.

Fmoc-Phe-CH₂-Se-)₂, 2h: Yield: 92%; Golden yellow solid; ¹H NMR (400 MHz, CDCl₃): δ 2.90 (d, J = 6.4 Hz, 2H), 3.05-3.14 (m, 2H), 4.13-4.18 (m, 1H), 4.28 (t, J = 8.0 Hz, 1H), 4.37 (d, J = 8.0 Hz, 2H), 5.10 (brs, 1H, NH), 7.15-7.73 (m, 13H); ¹³C NMR (100 MHz, CDCl₃): δ 34.58, 39.76, 47.21, 52.87, 69.06, 119.92, 124.99, 126.70, 127.00, 127.63, 128.58, 129.36, 137.15, 141.29, 143.86, 155.71; ⁷⁷Se NMR (76 MHz, CDCl₃): δ 286.36; ESI-MS, m/z: Calcd for C₄₈H₄₅N₂O₄Se₂ (M + H)⁺: 873; found: 873.

Fmoc-Ile-CH₂-Se-)₂, 2i: Yield: 94%; Golden yellow solid; ¹H NMR (400 MHz, CDCl₃): δ 0.85-0.92 (m, 6H), 1.06-1.13 (m, 2H), 1.41-1.51 (m, 1H), 3.11 (d, J = 8.4 Hz, 1H), 3.17 (d, J = 3.6 Hz, 1H), 3.79-3.86 (m, 1H), 4.18 (t, J = 6.0 Hz, 1H), 4.36 (d, J = 6.0 Hz, 2H), 5.00 (bd, J = 9.2 Hz, 1H), 7.26-7.75 (m, 8H); ¹³C NMR (100 MHz, CDCl₃): δ 12.06, 15.82, 25.52, 34.04, 38.92, 47.75, 56.94, 67.00, 125.52, 125.57, 127.47, 128.09, 141.76, 144.41, 156.67; ⁷⁷Se NMR (76 MHz, CDCl₃): δ 299.31; ESI-MS, m/z: Calcd for C₄₂H₄₈N₂O₄Se₂Na (M + Na)⁺: 827; found: 827.

Fmoc-Leu-CH₂-Se-)₂, 2j: Yield: 93%; Yellow solid; ¹H NMR (400 MHz, CDCl₃): δ 0.91 (d, *J* = 6.8 Hz, 6H), 1.42 (t, *J* = 6.8 Hz, 2H), 1.62-1.67 (m, 1H), 3.08 (d, *J* = 5.2 Hz, 1H), 3.18 (d, *J* = 5.2 Hz, 1H), 3.94 (t, *J* = 6.0 Hz, 1H), 4.17 (d, *J* = 6.0 Hz, 2H), 4.34-4.41 (m, 1H), 5.09 (bd, *J* = 8.4 Hz, 1H), 7.26-7.75 (m, 8H); ¹³C NMR (100 MHz, CDCl₃): δ 23.60, 25.48, 37.34, 43.77, 47.76, 50.23, 66.89, 120.43, 125.54, 127.48, 128.12, 141.78, 144.40, 156.44; ⁷⁷Se NMR (76 MHz, CDCl₃): δ 296.92; ESI-MS, m/z: Calcd for C₄₂H₄₉N₂O₄Se₂ (M + H)⁺: 805; found: 805.

Boc-L-Sec-OMe, **5a**: Yield: 89%; Pale yellow solid; ¹H NMR (400 MHz, CDCl₃): δ 1.37 (s, 9H), 3.33-3.40 (m, 2H), 3.69 (s, 3H), 4.55-4.58 (m, 1H), 5.39 (brs, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 28.90, 35.06, 52.17, 56.82, 79.63, 156.21, 172.81; ⁷⁷Se NMR (76 MHz, CDCl₃): δ 371.11; ESI-MS, m/z: Calcd for C₁₈H₃₂N₂O₈Se₂Na (M + Na)⁺: 587; found: 587.

Cbz-L-Sec-OMe, **5b**: Yield: 85%; Pale yellow solid; ¹H NMR (400 MHz, CDCl₃): δ 3.27-3.33 (m, 2H), 3.73 (s, 3H), 4.62-4.68 (m, 1H), 5.01 (s, 2H), 5.42 (s, 1H), 7.22-7.27 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 37.79, 52.25, 53.18, 66.97, 127.05, 128.52, 129.19, 135.95, 156.79, 172.20; ⁷⁷Se NMR (76 MHz, CDCl₃): δ 373.26; ESI-MS, m/z: Calcd for C₂₄H₂₈N₂O₈Se₂Na (M + Na)⁺: 655; found: 655.

Fmoc-L-Sec-OMe, **5c:** Yield: 87%; Pale yellow solid; ¹H NMR (400 MHz, CDCl₃): δ 3.28-3.35 (m, 2H), 3.66 (s, 3H), 4.17 (t, *J* = 6.0 Hz, 1H), 4.35 (d, *J* = 6.0 Hz, 2H), 4.54-4.59 (m, 1H), 5.02 (brs, 1H), 7.25-7.74 (m, 8H); ¹³C NMR (100 MHz, CDCl₃): δ 34.18, 47.20, 52.23, 54.80, 67.29,

120.14, 125.17, 127.29, 127.90, 141.39, 143.69, 156.55, 171.67; ⁷⁷Se NMR (76 MHz, CDCl₃): δ 374.12; ESI-MS, m/z: Calcd for C₃₈H₃₆N₂O₈Se₂Na (M + Na)⁺: 831; found: 831.

Boc-Val-CH₂-SeO₂H, **6a:** Yield: 90%; White solid; ¹H NMR (400 MHz, CDCl₃): δ 0.98 (d, J = 4.4 Hz, 6H), 1.43 (s, 9H), 1.87-1.92 (m, 1H), 3.33-3.37 (m, 2H), 3.83-3.89 (m, 1H), 4.86 (bd, J = 3.6 Hz, 1H), 8.14 (brs, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 19.32, 28.77, 32.99, 52.00, 62.15, 80.77, 156.59; ⁷⁷Se NMR (76 MHz, CDCl₃): δ 1213.18; ESI-MS (in methanol solution), m/z: Calcd for C₁₁H₂₃NO₄SeNa (as seleninate methyl ester + Na)⁺: 336; found: 336.

Boc-Leu-CH₂-SeO₂H, **6b**: Yield: 90%; White solid; ¹H NMR (400 MHz, CDCl₃): δ 0.92 (d, *J* = 4.4 Hz, 6H), 1.42 (s, 9H), 1.63-1.78 (m, 3H), 3.23 (d, *J* = 9.6 Hz, 1H), 3.36 (d, *J* = 11.6 Hz, 1H), 4.04-4.11 (m, 1H), 4.90 (brs, 1H), 7.38 (brs, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 23.21, 25.33, 28.82, 44.59, 45.62, 64.81, 80.98, 156.63; ⁷⁷Se NMR (76 MHz, CDCl₃): δ 1214.61; ESI-MS, m/z: Calcd for C₁₂H₂₅NO₄SeNa (as seleninate methyl ester + Na)⁺: 350; found: 350.

Boc-Phe-CH₂-SeO₂H, **6c:** Yield: 91%; White solid; ¹H NMR (400 MHz, CDCl₃): δ 1.39 (s, 9H), 2.86-2.98 (m, 2H), 3.26-3.34 (m, 2H), 4.23-4.31 (m, 1H), 5.08 (brs, 1H), 7.18-7.30 (m, 5H), 8.87 (br, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 28.80, 41.45, 48.38, 62.72, 80.97, 127.59, 129.33, 129.86, 136.87, 156.40; ⁷⁷Se NMR (76 MHz, CDCl₃): δ 1213.63; ESI-MS (in methanol solution), m/z: Calcd for C₁₅H₂₃NO₄SeNa (as seleninate methyl ester + Na)⁺: 384; found: 384.

Boc-Phg-CH₂-SeO₂H, **6d**: Yield: 89%; White solid; ¹H NMR (400 MHz, DMSO-*d*₆): δ 1.40 (s, 9H), 3.31-3.35 (m, 2H), 4.30 (t, *J* = 11.6 Hz, 1H), 4.95 (brs, 1H), 7.25-7.37 (m, 5H), 7.74 (brs, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 29.05, 50.66, 63.74, 79.29, 126.99, 128.21, 129.50, 143.01, 155.54; ⁷⁷Se NMR (76 MHz, DMSO-*d*₆): δ 1215.35; ESI-MS (in methanol solution), m/z: Calcd for C₁₄H₂₁NO₄SeNa (as seleninate methyl ester + Na)⁺: 370; found: 370.

Cbz-Ala-CH₂-SeO₂H, **6e**: Yield: 92%; White solid; ¹H NMR (400 MHz, CDCl₃): δ 1.28 (d, J = 5.8 Hz, 3H), 2.98 (d, J = 5.2 Hz, 1H), 3.03 (d, J = 5.2 Hz, 1H), 4.09-4.17 (m, 1H), 5.15 (s, 2H), 6.21 (brs, 1H), 7.21-7.27 (m, 5H), 8.02 (brs, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 21.83, 48.44, 61.37, 67.18, 127.05, 127.87, 128.70, 136.17, 156.67; ⁷⁷Se NMR (76 MHz, CDCl₃): δ 1218.31; ESI-MS, m/z: Calcd for C₁₁H₁₅NO₄Se: 305; found: 304 (M⁻).

Cbz-Val-CH₂-SeO₂H, **6f**: Yield: 90%; White solid; ¹H NMR (400 MHz, CDCl₃): δ 0.95 (d, J = 6.4 Hz, 6H), 1.88-1.93 (m, 1H), 3.18-3.31 (m, 2H), 3.93-3.98 (m, 1H), 5.09 (s, 2H), 5.32 (bd, J = 8.0 Hz, 1H), 6.50 (s, 1H), 7.26-7.36 (m, 5H); ¹³C NMR (100 MHz, CDCl₃): δ 18.17, 32.68, 52.23, 61.03, 67.19, 128.26, 128.51, 128.58, 136.17, 156.65; ⁷⁷Se NMR (76 MHz, CDCl₃): δ 1214.04; ESI-MS (in methanol solution), m/z: Calcd for C₁₄H₂₁NO₄SeNa (as seleninate methyl ester + Na)⁺: 370; found: 370.

Cbz-Phe-CH₂-SeO₂H, **6g**: Yield: 92%; White solid; ¹H NMR (400 MHz, CDCl₃): δ 2.88-2.98 (m, 2H), 3.26 (d, J = 5.6 Hz, 2H), 4.32-4.39 (m, 1H), 5.05 (s, 2H), 5.33 (brs, 1H), 7.14-7.35 (m, 10H), 8.37 (brs, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 41.03, 48.40, 61.33, 67.14, 127.24, 128.17, 128.27, 128.55, 128.92, 129.32, 136.13, 137.03, 156.29; ⁷⁷Se NMR (76 MHz, CDCl₃): δ

1216.43; ESI-MS (in methanol solution), m/z: Calcd for $C_{18}H_{22}NO_4Se$ (as seleninate methyl ester + H)⁺: 396; found: 396.

Fmoc-Phe-CH₂-SeO₂H, **6h**: Yield: 90%; White solid; ¹H NMR (400 MHz, CDCl₃): δ 2.91-2.99 (m, 2H), 3.23-3.27 (m, 2H), 3.99-4.03 (m, 1H), 4.13 (t, J = 6.0 Hz, 1H), 4.25 (d, J = 6.0 Hz, 2H), 5.31 (s, 1H), 7.18-7.70 (m, 13H), 8.49 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 39.81, 47.19, 52.92, 62.58, 69.06, 119.93, 124.85, 126.72, 127.02, 127.65, 128.58, 129.36, 137.16, 141.31, 143.86, 155.72; ⁷⁷Se NMR (76 MHz, CDCl₃): δ 1216.13; ESI-MS (in methanol solution), m/z: Calcd for C₂₅H₂₆NO₄Se (as seleninate methyl ester + H)⁺: 484; found: 484.

Fmoc-Ile-CH₂-SeO₂H, **6i:** Yield: 91%; White solid; ¹H NMR (400 MHz, CDCl₃): δ 0.82-0.86 (m, 6H), 1.18-1.23 (m, 2H), 2.02-2.08 (m, 1H), 3.09 (d, *J* = 5.4 Hz, 1H), 3.16 (d, *J* = 5.4 Hz, 1H), 3.99-4.03 (m, 1H), 4.18 (t, *J* = 6.0 Hz, 1H), 4.29 (d, *J* = 6.0 Hz, 2H), 5.31 (s, 1H), 7.16-7.74 (m, 8H), 8.47 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 12.06, 18.24, 25.35, 43.65, 45.73, 62.07, 47.17, 68.35, 126.69, 127.18, 127.74, 128.66, 141.33, 143.91, 156.17; ⁷⁷Se NMR (76 MHz, CDCl₃): δ 1217.81; ESI-MS (in methanol solution), m/z: Calcd for C₂₂H₂₇NO₄SeNa (as seleninate methyl ester + Na)⁺: 472; found: 472.

HRMS of Boc-Val-CH₂-Se-)₂, 2a

¹H NMR of Boc-Val-CH₂-Se-)₂, 2a

¹³C NMR of Boc-Val-CH₂-Se-)₂, 2a

⁷⁷Se NMR of Boc-Val-CH₂-Se-)₂, 2a

HRMS of Boc-Leu-CH₂-Se-)₂, 2b

¹H NMR of Boc-Leu-CH₂-Se-)₂, 2b

¹³C NMR of Boc-Leu-CH₂-Se-)₂, 2b

⁷⁷Se NMR of Boc-Leu-CH₂-Se-)₂, 2b

ESI-MS of Boc-Phe-CH₂-Se-)₂, 2c

¹H NMR of Boc-Phe-CH₂-Se-)₂, 2c

¹³C NMR of Boc-Phe-CH₂-Se-)₂, 2c

⁷⁷Se NMR of Boc-Phe-CH₂-Se-)₂, 2c

ESI-MS of Boc-Phg-CH₂-Se-)₂, 2d

¹³C NMR of Boc-Phg-CH₂-Se-)₂, 2d

⁷⁷Se NMR of Boc-Phg-CH₂-Se-)₂, 2d

ESI-MS of Cbz-Ala-CH₂-Se-)₂, 2e

¹H NMR of Cbz-Ala-CH₂-Se-)₂, 2e

¹³C NMR of Cbz-Ala-CH₂-Se-)₂, 2e

⁷⁷Se NMR of Cbz-Ala-CH₂-Se-)₂, 2e

HRMS of Cbz-Val-CH₂-Se-)₂, 2f

¹H NMR of Cbz-Val-CH₂-Se-)₂, 2f

¹³C NMR of Cbz-Val-CH₂-Se-)₂, 2f

⁷⁷Se NMR of Cbz-Val-CH₂-Se-)₂, 2f

ESI-MS of Cbz-Phe-CH₂-Se-)₂, 2g

¹H NMR of Cbz-Phe-CH₂-Se-)₂, 2g

¹³C NMR of Cbz-Phe-CH₂-Se-)₂, 2g

⁷⁷Se NMR of Cbz-Phe-CH₂-Se-)₂, 2g

ESI-MS of Fmoc-Phe-CH₂-Se-)₂, 2h

¹H NMR of Fmoc-Phe-CH₂-Se-)₂, 2h

ESI-MS of Fmoc-Ile-CH₂-Se-)₂, 2i

¹H NMR of Fmoc-Ile-CH₂-Se-)₂, 2i

¹³C NMR of Fmoc-Ile-CH₂-Se-)₂, 2i

⁷⁷Se NMR of Fmoc-Ile-CH₂-Se-)₂, 2i

ESI-MS of Fmoc-Leu-CH₂-Se-)₂, 2j

¹³C NMR of Fmoc-Leu-CH₂-Se-)₂, 2j

⁷⁷Se NMR of Fmoc-Leu-CH₂-Se-)₂, 2j

ESI-MS of Boc-L-Sec-OMe, 5a

¹³C NMR of Boc-L-Sec-OMe, 5a

⁷⁷Se NMR of Boc-L-Sec-OMe, 5a

ESI-MS of Cbz-L-Sec-OMe, 5b

¹H NMR of Cbz-L-Sec-OMe, 5b

¹³C NMR of Cbz-L-Sec-OMe, 5b

ESI-MS of Fmoc-L-Sec-OMe, 5c

¹³C NMR of Fmoc-L-Sec-OMe, 5c

⁷⁷Se NMR of Fmoc-L-Sec-OMe, 5c

¹H NMR of Boc-Val-CH₂-SeO₂H, 6a

¹³C NMR of Boc-Val-CH₂-SeO₂H, 6a

⁷⁷Se NMR of Boc-Val-CH₂-SeO₂H, 6a

¹³C NMR of Boc-Leu-CH₂-SeO₂H, 6b

⁷⁷Se NMR of Boc-Leu-CH₂-SeO₂H, 6b

ESI-MS of Boc-Phe-CH₂-SeO₂H, 6c

¹H NMR of Boc-Phe-CH₂-SeO₂H, 6c

¹³C NMR of Boc-Phe-CH₂-SeO₂H, 6c

⁷⁷Se NMR of Boc-Phe-CH₂-SeO₂H, 6c

ESI-MS of Boc-Phg-CH₂-SeO₂H, 6d

¹³C NMR of Boc-Phg-CH₂-SeO₂H, 6d

ESI-MS of Cbz-Ala-CH₂-SeO₂H, 6e

¹H NMR of Cbz-Ala-CH₂-SeO₂H, 6e

¹³C NMR of Cbz-Ala-CH₂-SeO₂H, 6e

⁷⁷Se NMR of Cbz-Ala-CH₂-SeO₂H, 6e

ESI-MS of Cbz-Val-CH₂-SeO₂H, 6f

¹H NMR of Cbz-Val-CH₂-SeO₂H, 6f

¹³C NMR of Cbz-Val-CH₂-SeO₂H, 6f

⁷⁷Se NMR of Cbz-Val-CH₂-SeO₂H, 6f

ESI-MS of Fmoc-Phe-CH₂-SeO₂H, 6h

¹³C NMR of Fmoc-Phe-CH₂-SeO₂H, 6h

⁷⁷Se NMR of Fmoc-Phe-CH₂-SeO₂H, 6h

ESI-MS of Fmoc-Ile-CH₂-SeO₂H, 6i

¹H NMR of Fmoc-Ile-CH₂-SeO₂H, 6i

⁷⁷Se NMR of Fmoc-Ile-CH₂-SeO₂H, 6i

Chiral HPLC chromatograms

2h + 2h* mixture, Fmoc-L, D-Phe-CH₂-Se)₂-

Chiral HPLC particulars:

Agilent 1100 series having G1311A VWD at $\lambda = 254$ nm.

Column Type: Phenominex made Lux, pore size-5µ, Cellusole-1.

Column Dimensions: diameter x length = $250 \times 4.60 \text{ mm}$.

Flow rate: 1.0 mL/min, 30 min.

Method: n-hexane/isopropanol (70:30).