Supporting Information

Effective Enhancement of Electrochemical Performance for Layered Cathode Li_{1.5}Mn_{0.75}Ni_{0.25}O_{2.5} via A Novel Facile Molten Salt Method

Zhuo Zheng,^a Wei-Bo Hua,^a Shi-Xuan Liao,^a Yan-Jun Zhong,^a En-Hui Wang,^a Bin-Bin Xu,^b Hua-Kun Liu^c and Ben-He Zhong^{*a}

^a College of Chemical Engineering, Sichuan University, No.24 South Section 1, Yihuan Road,

Chengdu, 610065, China.

^b Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Fujian 361005, China.

^c Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Innovation Campus, North Wollongong, NSW, Australia.
*Corresponding author. Email: zhongbenhe@163.com

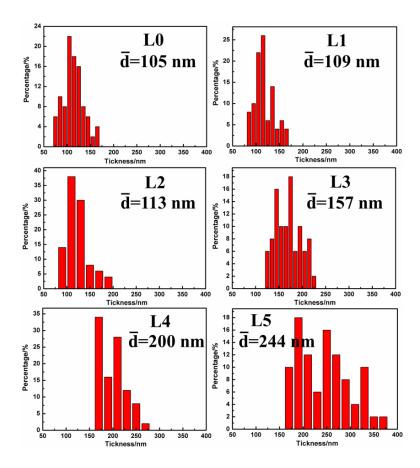


Fig. S1 Thickness distribution and the average thickness of L0 - L5 nanoplates

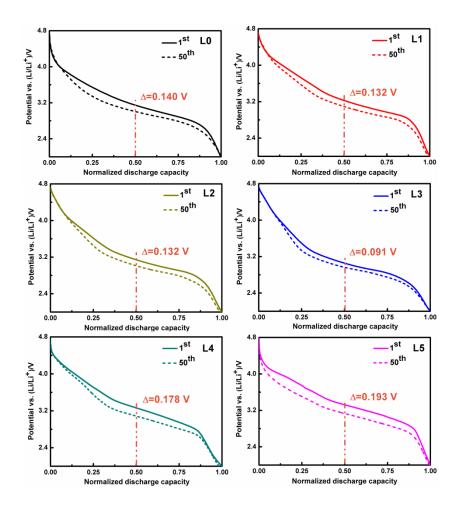


Fig. S2 Discharge profiles of 1st and 50th cycles of these samples at 0.2 C after normalization of capacity