Supporting Information

Unique Lead Adsorption Behavior of Ions Sieves in Pellet-like Reduced

Graphene Oxide

Dejian Chen,^a Shunxing Li,^{*,a,b} Liling Zou,^a Fengying Zheng^{a,b}

a Department of Chemistry and Environment, Minnan Normal University, Zhangzhou,

Fujian (P. R. China)

b Fujian Province Key Laboratory of Modern Analytical Science and Separation

Technology Minnan Normal University, Zhangzhou, Fujian (P. R. China)

E-mail: lishunxing@mnnu.edu.cn; shunxing_li@aliyun.com

Figure S1. Element mapping of core-shell α-Fe₂O₃@ reduced graphene oxide

nanoparticles.

Figure S2. Size distribution of pellet like reduced graphene oxide spheres.

Figure S3. XRD pattern of RGO and P-RGO.

Figure S4. Zeta potential of the P-RGO at different pH.

Sample	Specific surface area $(m^2 g^{-1})$	Pore volume (cm ³ g ^{-1})
RGO	16.75	0.053
P-RGO	288.85	0.23

Table S1. Specific surface area of RGO and P-RGO determined by BET method.

Sorbent	Sorption Capacity (mg/g)	S _{BET} (m ³ /g)	Reference
amino-functionalized hexagonal mesoporous silica	90.7,	1042.7	1
Activated carbons obtained from sawdust	17.5	1100	2
Peanut shell activated carbon	35.5	1019	3
chitosan	77.02	6.22,	4
activated carbon-chitosan complex	125.4	152.8	4
activated carbon	40.119	1053	5
Graphene nanosheets	35.46	N.G.	6
Titanium Carbide	140.1	484	7
Tourmaline	108	2.64	8
diatomite	25.01	4.11	9
Activated carbon	147	1688	10
Titanium dioxide/carbon nanotube composites	137	N.G.	11
carbon nanotube	33	N.G.	11
Pellet-like Reduced Graphene Oxide	184.5	288.85	This work

Table S2 Adsorption capacity of lead ions on various adsorbents.

Note: "N.G." refer to no given of S_{BET.}

Reference

- S1 K. Wei, L. Shu, W. Guo, Y. Wu and X. Zeng, Chinese J. Chem., 2011, 29, 143.
- S2 L. Giraldo and J. C. Moreno-Piraján, Braz. J. Chem. Eng., 2008, 25, 143.
- S3 T. Xu and X. Liu. Chinese J. Chem. Eng., 2008, 16, 401.
- S4 H. Ge and X. Fan, Chem. Eng. & Technol., 2011, 34, 1745.
- S5 X. Song, H. Liu, L. Cheng and Y. Qu, Desalination, 2010, 255, 78.
- S6 Z. H. Huang, X. Zheng, W. Lv, M. Wang, Q. H. Yang and F. Kang, *Langmuir*, 2011, 27, 7558.
- S7 Q. Peng, J. Guo, Q. Zhang, J. Xiang, B. Liu, A. Zhou, R. Liu and Y. Tian, J. Am. Chem. Soc., 2014, 136, 4113.
- S8 C. P. Wang, J. Z. Wu, H. W. Sun, T. Wang, H. B. Liu and Y. Chang, Ind. Eng.

Chem. Res. 2011, 50, 8515.

- S9 M. Irani, M. Amjadi and M. A. Mousavian, Chem. Eng. J. 2011, 178, 317.
- S10 Y. Li, Q. Du, X. Wang, P. Zhang, D. Wang, Z. Wang and Y. Xia, J. Hazard.
- Mater. 2010, 183, 583.
- S11 X. Zhao, Q. Jia, N. Song, W. Zhou and Y. Li, J. Chem. Eng. Data 2010, 55, 4428.