Bimetallic titanium complex catalyzed enantioselective oxidation of thioethers

using aqueous H₂O₂ as terminal oxidant

Prasanta Kumar Bera,^a Naveen Gupta,^{a, b} Sayed H. R. Abdi,^{* a, b} Noor-ul H. Khan,^{a, b} Rukhsana I.

Kureshy,^{a, b} Hari C. Bajaj^{a, b}

^a Discipline of Inorganic Materials and Catalysis, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), G. B. Marg, Bhavnagar, 364002, Gujarat, India. ^b Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific & Industrial Research (CSIR), G. B. Marg, Bhavnagar, 364002, Gujarat, India. *Tel:* +91-0278-2567760, *Fax:* +91-0278-2566970; *E-mail:* <u>shrabdi@csmcri.org</u>

Table of Contents

1.	Characterization data and HPLC condition of sulfoxides	2-5.
2.	ESI-MS analysis of <i>in situ</i> generated L1-Ti complex	6.
3.	¹ H and ¹³ C NMR spectra of dimeric ligands (L1-L7)7	-13.
4.	HPLC chromatogram of racemic and chiral sulfoxides14	-28.
5.	Notes and references	.29.

1. Characterization data and of the sulfoxides

Methyl phenyl sulfoxide¹: Colourless oil; Yield: 89%; ee: 91%; ¹H NMR (500 MHz, CDCl₃): δ = 7.66-7.64 (m, 2H), 7.53-7.48 (m, 3H), 2.71 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 145.1, 130.5, 128.9, 123.0, 43.3 ppm; The enantiomeric excess was determined by HPLC analysis. HPLC condition: Daicel Chiralcel OD column, 80:20 Hex/IPA, 0.5 ml/min, 30 °C, 254 nm; t_r (**R**) = 13.8 min, t_r (**S**) = 15.8 min.

4-Methylphenyl methyl sulfoxide¹: White solid; Yield: 86%; ee: 94%; ¹H NMR (500 MHz, CDCl₃): $\delta = 7.54$ (d, J = 8.0 Hz, 2H), 7.32 (d, J = 8 Hz, 2H), 2.70 (s, 3H), 2.41 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 142.1$, 141.2, 129.7, 123.3, 43.6, 21.1 ppm; The enantiomeric excess was determined by HPLC analysis. HPLC condition: Daicel Chiralcel OD column, 94:06 Hex/IPA, 0.5 ml/min, 30 °C, 254 nm; t_r (\mathbf{R}) = 32.2 min, t_r (\mathbf{S}) = 35.8 min.

4-Methoxyphenyl methyl sulfoxide¹: Yellow oil; Yield: 84%; ee: 82%; ¹H NMR (500 MHz, CDCl₃): $\delta = 7.45$ (d, J = 7.8 Hz, 1H), 6.88 (d, J = 7.6 Hz, 1H), 3.70 (s, 3H), 2.56 (s, 3H) ppm; ¹³C NMR (50 MHz, CDCl₃): $\delta = 161.5$, 136.0, 125.0, 114.4, 55.1, 43.4 ppm; The enantiomeric excess was determined by HPLC analysis. HPLC condition: Daicel Chiralcel OD column, 90:10 Hex/IPA, 0.7 ml/min, 30 °C, 254 nm; t_r (**R**) = 21.7 min, t_r (**S**) = 23.3 min.

4-Fluorophenyl methyl sulfoxide²: Colourless oil; Yield: 84%; ee: 84%; ¹H NMR (500 MHz, CDCl₃): $\delta = 7.69-7.66$ (m, 2H), 7.25-7.22 (m, 2H), 2.73 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 165.0$, 163.0, 140.8, 125.7, 125.6, 116.5, 116.3, 43.8 ppm; The enantiomeric excess was determined by HPLC analysis. HPLC condition: Daicel Chiralcel OD column, 92:08 Hex/IPA, 0.4 ml/min, 30 °C, 254 nm; t_r (**R**) = 32.3 min, t_r (**S**) = 34.7 min.

4-Chlorophenyl methyl sulfoxide¹: Colourless oil; Yield: 81%; ee: 91%; ¹H NMR (500 MHz, CDCl₃): $\delta = 7.61$ (d, J = 8.5 Hz, 2H), 7.51 (d, J = 8.5 Hz, 2H), 2.73 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 143.8$, 136.7, 129.2, 124.6, 43.6 ppm; The enantiomeric excess was determined by HPLC analysis. HPLC condition: Daicel Chiralcel OB column, 80:20 Hex/IPA, 0.7 ml/min, 30 °C, 254 nm; t_r (**R**) = 11.5 min, t_r (**S**) = 16.9 min.

4-Bromophenyl methyl sulfoxide¹: White solid; Yield: 83%; ee: 95%; ¹H NMR (500 MHz, CDCl₃): $\delta = 7.67$ (d, J = 8.5 Hz, 2H), 7.53 (d, J = 8.5 Hz, 2H), 2.73 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 144.7$, 132.5, 125.4, 125.1, 43.8 ppm; The enantiomeric excess was determined by HPLC analysis. HPLC condition: Daicel Chiralcel OB column, 80:20 Hex/IPA, 0.5 ml/min, 30 °C, 254 nm; t_r (**R**) = 17.6 min, t_r (**S**) = 24.3 min.

4-Nitrophenyl methyl sulfoxide¹: White solid; Yield: 64%; ee: 99%; ¹H NMR (500 MHz, CDCl₃): $\delta = 8.40$ (d, J = 8.5 Hz, 2H), 7.86 (d, J = 8.5 Hz, 2H), 2.82 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 153.1$, 149.4, 124.6, 124.4, 43.8 ppm; The enantiomeric excess was determined by HPLC analysis. HPLC condition: Daicel Chiralcel OJ column, 65:35 Hex/IPA, 0.5 ml/min, 30 °C, 254 nm; t_r (**R**) = 22.3 min, t_r (**S**) = 25.8 min.

3-Chlorophenyl methyl sulfoxide³: Colourless oil; Yield: 79%; ee: 91%; ¹H NMR (500 MHz, CDCl₃): $\delta = 7.67$ (s, 1H), 7.52-7.49 (m, 1H), 7.48-7.46 (m, 2H), 2.75 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 147.5$, 135.4, 130.9, 130.4, 123.3, 121.4, 43.7 ppm; The enantiomeric excess was determined by HPLC analysis. HPLC condition: Daicel Chiralcel OB column, 90:10 Hex/IPA, 1.0 ml/min, 30 °C, 254 nm; t_r (**R**) = 12.5 min, t_r (**S**) = 18.9 min.

3-Bromophenyl methyl sulfoxide⁴: Colorless oil; Yield: 80%; ee: 85%; ¹H NMR (200 MHz, CDCl₃): $\delta = 7.82$ (s, 1H), 7.65-7.53 (m, 2H), 7.47-7.32 (m, 1H), 2.75 (s, 3H) ppm; ¹³C NMR (50

MHz, CDCl₃): δ = 147.9, 134.1, 130.8, 126.4, 123.5, 122.1, 44.0 ppm; The enantiomeric excess was determined by HPLC analysis. HPLC condition: Daicel Chiralcel OB column, 80:20 Hex/IPA, 1.0 ml/min, 30 °C, 254 nm; t_r (**R**) = 8.9 min, t_r (**S**) = 13.6 min.

Ethyl phenyl sulfoxide¹: Colourless oil; Yield: 84%; ee: 78%; ¹H NMR (500 MHz, CDCl₃): δ = 7.62-7.60 (m, 2H), 7.54-7.49 (m, 3H), 2.95-2.87 (m, 1H), 2.81-2.74 (m, 1H), 1.20 (t, J = 7.5, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 143.0, 130.8, 129.0, 124.0, 50.1, 5.8 ppm; The enantiomeric excess was determined by HPLC analysis. HPLC condition: Daicel Chiralcel OD column, 90:10 Hex/IPA, 0.5 ml/min, 30 °C, 254 nm; t_r (\mathbf{R}) = 19.4 min, t_r (\mathbf{S}) = 23.3 min.

Benzyl phenyl sulfoxide¹: White solid; Yield: 81%; ee: 79%; ¹H NMR (500 MHz, CDCl₃): $\delta =$ 7.46-7.37 (m, 5H), 7.29-7.23 (m, 3H), 6.98 (m, 2H), 4.12 (d, *J* = 12.5 Hz, 1H), 4.00 (d, *J* = 12.5 Hz, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta =$ 142.6, 131.2, 130.3, 129.1, 128.8, 128.4, 128.2, 124.4, 63.5 ppm; The enantiomeric excess was determined by HPLC analysis. HPLC condition: Daicel Chiralcel OD column, 90:10 Hex/IPA, 0.5 ml/min, 30 °C, 254 nm; t_r (**R**) = 24.1 min, t_r (**S**) = 28.8 min.

(+)-trans-(1*S*,2*S*)-2-Phenyl-1,3-dithiane 1-oxide⁵: White solid; Yield: 93%; ee: 84%; ¹H NMR (500 MHz, CDCl₃): $\delta = 7.43-7.37$ (m, 5H), 4.55 (s, 1H), 3.57-3.56 (m, 1H), 2.90-2.84 (m, 1H), 2.78-2.72 (m, 1H), 2.68-2.65 (m, 1H), 2.62-2.49 (m, 1H), 2.40-2.31 (m, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 133.3$, 129.3, 129.0, 128.7, 69.6, 54.7, 31.3, 29.4 ppm; The enantiomeric excess was determined by HPLC analysis. HPLC condition: Daicel Chiralcel OD column, 70:30 Hex/IPA, 0.7 ml/min, 30 °C, 254 nm; t_r (*minor*) = 13.3 min, t_r (*major*) = 26.4 min.

(+)-trans-2-(4-Methylphenyl)-1,3-dithiane 1-oxide⁵: White solid; Yield: 94%; ee: 78%; ¹H NMR (200 MHz, CDCl₃): δ = 7.31 (d, *J* = 8Hz 2H), 7.20 (d, *J* = 8Hz, 2H), 4.54 (s, 1H), 3.59-

3.53 (m, 1H), 2.96-2.62 (m, 3H), 2.58-2.43 (m, 2H), 2.34 (s, 3H) ppm; ¹³C NMR (50 MHz, CDCl₃): δ = 139.3, 130.2, 129.8, 128.5, 69.4, 31.4, 29.5, 21.2 ppm; The enantiomeric excess was determined by HPLC analysis. HPLC condition: Daicel Chiralcel OD column, 70:30 Hex/IPA, 0.7 ml/min, 30 °C, 254 nm; t_r (*minor*) = 12.9 min, t_r (*major*) = 22.9 min.

(+)-trans-2-(4-Chlorophenyl)-1,3-dithiane 1-Oxide⁵: White solid; Yield: 94%; ee: 95%; ¹H NMR (500 MHz, CDCl₃): $\delta = 7.36$ (d, J = 5Hz, 4H), 4.53 (s, 1H), 3.58-3.56 (m, 1H), 2.90-2.85 (m, 1H), 2.79-2.73 (m, 1H), 2.70-2.67 (m, 1H), 2.54-2.51 (m, 1H), 2.40-2.32 (m, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 135.3$, 131.8, 130.0, 129.3, 68.8, 54.7, 31.3, 29.4 ppm; The enantiomeric excess was determined by HPLC analysis. HPLC condition: Daicel Chiralcel OD column, 70:30 Hex/IPA, 0.7 ml/min, 30 °C, 254 nm; t_r (*minor*) = 14.1 min, t_r (*major*) = 33.9 min.

(+)-trans-2-(2-Fluorophenyl)-1,3-dithiane 1-oxide⁵: White solid; Yield: 92%; ee: 84%; ¹H NMR (200 MHz, CDCl₃): δ = 7.36-7.29 (m, 2H), 7.05-6.97 (m, 2H), 4.48 (s, 1H), 3.51-3.45 (m, 1H), 2.87-2.62 (m, 3H), 2.49-2.23 (m, 2H) ppm; ¹³C NMR (50 MHz, CDCl₃): δ = 165.5, 160.6, 130.5, 130.4, 129.2, 129.1, 116.2, 115.8, 68.6, 54.6, 31.3, 29.4 ppm; The enantiomeric excess was determined by HPLC analysis. HPLC condition: Daicel Chiralcel OD column, 70:30 Hex/IPA, 0.7 ml/min, 30 °C, 254 nm; t_r (*minor*) = 12.9 min, t_r (*major*) = 33.6 min.

2. (a) ESI-MS analysis of *in situ* generated L1-Ti complex at L1:Ti =1:1.

(b) ESI-MS analysis of *in situ* generated L1-Ti complex at L1:Ti =1:2.

3. ¹H and ¹³C NMR spectra of dimeric ligands (L1-L7) Ligand L1

PKB-101

Ligand L5

4. HPLC chromatogram of racemic and chiral sulfoxides

Phenyl methyl sulfoxide

Ret. Time	Area	Peak Start	Peak End	Area%
13.798	1864485	13.312	15.125	51.5957
15.839	1749161	15.381	16.981	48.4043

4-Methylphenyl methyl sulfoxide

Ret. Time	Area	Peak Start	Peak End	Area%
32.151	18389022	31.221	34.880	50.5395
35.794	17996409	34.880	39.616	49.4605

4-Methoxyphenyl methyl sulfoxide

Ret. Time	Area	Peak Start	Peak End	Area%
21.655	36059168	20.981	22.784	50.5422
23.268	35285457	22.784	25.888	49.4578

4-Fluorophenyl methyl sulfoxide

Ret. Time	Area	Peak Start	Peak End	Area%
32.292	31637611	31.296	33.931	49.4862
34.732	32294609	33.931	38.411	50.5138

Ret. Time	Area	Peak Start	Peak End	Area%
31.186	20408120	30.379	32.704	92.1199
33.278	1745743	32.747	34.656	7.8801

4-Chlorophenyl methyl sulfoxide

Ret. Time	Area	Peak Start	Peak End	Area%
11.512	137217214	9.323	13.600	51.0558
16.903	131541922	13.621	20.608	48.9442

Ret. Time	Area	Peak Start	Peak End	Area%
11.892	115325	10.005	12.949	4.6079
17.398	2387451	13.771	20.544	95.3921

4-Bromophenyl methyl sulfoxide

Ret. Time	Area	Peak Start	Peak End	Area%
17.648	2543207	14.240	19.797	50.8699
24.270	2456222	20.000	26.517	49.1301

4-Nitrophenyl methyl sulfoxide

Ret. Time	Area	Peak Start	Peak End	Area%
22.219	18248354	21.472	25.387	99.2883
25.967	130800	25.440	27.520	0.7117

3-Chlorophenyl methyl sulfoxide

Ret. Time	Area	Peak Start	Peak End	Area%
13.193	647804	11.616	14.635	4.5745
19.251	13513369	15.093	22.720	95.4255

3-Bromophenyl methyl sulfoxide

Ret. Time	Area	Peak Start	Peak End	Area%
8.964	13780885	6.688	10.539	50.4502
13.638	13534941	10.539	16.203	49.5498

Ethyl phenyl sulfoxide

Benzyl phenyl sulfoxide

Ret. Time	Area	Peak Start	Peak End	Area%
24.088	10564866	23.264	25.707	49.9445
28.777	10588329	27.787	30.933	50.0555

(+)-trans-(1*S*,2*S*)-2-Phenyl-1,3-dithiane 1-oxide

Ret. Time	Area	Peak Start	Peak End	Area%
13.315	2060198	12.768	14.955	8.0177
26.418	23635569	25.323	29.557	91.9823

(+)-trans-2-(4-Methylphenyl)-1,3-dithiane 1-oxide

(+)-trans-2-(4-Chlorophenyl)-1,3-dithiane 1-Oxide

(+)-trans-2-(2-Fluorophenyl)-1,3-dithiane 1-oxide

5. Notes and references

- 1 J. Legros, C. Bolm, Chem. Eur. J., 2005, 11, 1086-1092.
- 2 J. Sun, C. Zhu, Z. Dai, M. Yang, Y. Pan, H. Hu, J. Org. Chem. 2004, 69, 8500-8503.
- 3 S. Liaoa, B. List, Adv. Synth. Catal., 2012, 354, 2363-2367.
- 4 T. Yamaguchi, K. Matsumoto, B. Saito, T. Katsuki, *Angew. Chem. Int. Ed.*, 2007, **46**, 4729-4731.
- 5 Z. M. Liu, H. Zhao, M. Q. Li, Y. B. Lan, Q. B. Yao, J. C. Tao and X. W. Wang, *Adv. Synth. Catal.*, 2012, **354**, 1012-1022.