Supporting Information

Fluorescence 'on-off-on' chemosensor for the sequential recognition of Hg²⁺ and Cys in water

Ye Won Choi, Jae Jun Lee, Ga Rim You, Cheal Kim*

Department of Fine Chemistry and Department of Interdisciplinary Bio IT Materials, Seoul National University of Science and Technology, Seoul 139-743, Korea. Fax: +82-2-973-9149; Tel: +82-2-970-6693; E-mail:chealkim@seoultech.ac.kr

Sensor	Detection Limit (µM)	Interference	Percent of water in solution	Method of detection	Analyte	Reference
NH2 NH2 NH2	0.35	No data	90%	Fluorescence	Cys	59
rs_n=C=ty-ncs-1	No data	No data	33.3%	Fluorescence UV-vis	Cys, Hcy, GSH, His	60
N N HN PhHN NH NH NHPh	9.6 x 10 ⁻⁵	None	99%	Fluorescence	Cys	61
	0.037	None	70%	Fluorescence UV-vis	Cys	62
	0.091	None	33.3%	Fluorescence UV-vis	Cys	63
	1.0	None	30%	Fluorescence UV-vis	Cys	64
	5.2	None	99%	Fluorescence	Cys	This work

Table S1. Examples for the sequential detection of Hg^{2+} and Cys by organic chemosensors

Fig. S1 Job plot of 1 and Hg^{2+} in bis-tris buffer solution (10 mM, pH 7.0). The total concentrations of 1 and Hg^{2+} were 100 μ M.

Fig. S2 Positive-ion electrospray ionization mass spectrum of 1 (100 μ M) upon addition of 0.5 equiv of Hg(NO₃)₂.

Fig. S3 ¹H NMR titration of **1** with Hg²⁺.

Fig. S4 Li's equation of 1 (at 395 nm), assuming 1:2 stoichiometry for association between Hg^{2+} and 1.

Fig. S5 Detection limit of 1 (1 μ M) for Hg²⁺ through change of fluorescence intensity.

Fig. S6 Fluorescence intensities of 1 upon addition of 25 equiv of Hg^{2+} at various range of pH.

Fig. S7 Fluorescence intensity (at 395 nm) of **1** as a function of Hg^{2+} concentration ([**1**] = 1 μ mol/L and [Hg^{2+}] = 1.0-10.0 μ mol/L).

Fig. S8 The energy-minimized structures of (a) 1 and (b) $Hg^{2+}-2\cdot 1$.

Excited State 1	Wavelength	Percent (%)	Oscillator strength
$\mathrm{H} \rightarrow \mathrm{L}$	317.90 nm	96%	0.7856
$H-1 \rightarrow L$		2%	
Excited State 2	Wavelength	Percent (%)	Oscillator strength
$H-1 \rightarrow L$	307.43 nm	96%	0.0238
$\mathrm{H} \to \mathrm{L}$		2%	

(b)

(a)

Fig. S9 (a) The major electronic transition energies and molecular orbital contributions for 1 (H = HOMO and L = LUMO). (b) Isosurface (0.030 electron bohr⁻³) of molecular orbitals participating in the major singlet excited states of 1.

Excited State 1	Wavelength	Percent (%)	Oscillator strength
$H-1 \rightarrow L$	342.03 nm	36%	0.4211
$H-2 \rightarrow L$		20%	
$H-3 \rightarrow L$		11%	
$\text{H-3} \rightarrow \text{L+1}$		9%	
$\text{H-1} \rightarrow \text{L+1}$		8%	
$\mathrm{H} \rightarrow \mathrm{L}$		7%	
$H \rightarrow L+1$		5%	
Excited State 2	Wavelength	Percent (%)	Oscillator strength
$H \rightarrow L+1$	341.05 nm	36%	0.4556
$\text{H-2} \rightarrow \text{L+1}$		23%	
$H-3 \rightarrow L$		14%	
$\text{H-1} \rightarrow \text{L}$		10%	
$\text{H-3} \rightarrow \text{L+1}$		8%	
$\mathrm{H} \rightarrow \mathrm{L}$		6%	
Excited State 3	Wavelength	Percent (%)	Oscillator strength
$\text{H-1} \rightarrow \text{L}$	338.24 nm	33%	0.2312
$H-3 \rightarrow L$		28%	
$\text{H-2} \rightarrow \text{L+1}$		16%	
$H \rightarrow L+1$		11%	
11.2 . 1		00/	

Fig. S10 (a) The major electronic transition energies and molecular orbital contributions for $Hg^{2+}-2\cdot 1$ complex (H = HOMO and L = LUMO). (b) Isosurface (0.030 electron bohr⁻³) of molecular orbitals participating in the major singlet excited states of $Hg^{2+}-2\cdot 1$ complex.

Fig. S11 Job plot of Hg²⁺-2·1 and Cys in bis-tris buffer solution (10 mM, pH 7.0). The total concentrations of Hg²⁺-2·1 and Cys were 50 μ M.

Fig. S12 Positive-ion electrospray ionization mass spectrum of $Hg^{2+}-2\cdot 1$ (50 μ M) upon addition of 2.0 equiv of Cys.

Fig. S13 Li's equation of $Hg^{2+}-2\cdot 1$ (at 395 nm), assuming 1:2 stoichiometry for association between $Hg^{2+}-2\cdot 1$ and Cys.

Fig. S14 Detection limit of Hg²⁺-2·1 (1 μ M) for Cys through change of fluorescence intensity.