SUPPORTING INFORMATION

Unexpected C=N bond formation *via* NaI-catalyzed oxidative de-tetra-hydrogenative cross-couplings between *N*, *N*-dimethyl aniline and sulfamides

Yang Zheng,^a Jincheng Mao,^{*a,b} Jie Chen,^a Guangwei Rong,^a Defu Liu,^a Hong

Yan,^a Yongjian Chi^a and Xinfang Xu^{*a}

 ^aKey Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. ^{China.}
^bState Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, P. R. China

> Fax: (+86)512-6588-0403 E-mail: jcmao@suda.edu.cn

Table of Contents

1. General information		S2
2. Characterization of the corresponding products	S3 -	·S10
3. Mechanism Study of the Ligand	S1(D-S12
4. Intermediates C Identification	S13	3-S14
5. HRMS Observation of the Product from <i>N</i> , <i>N</i> -Diethylanili	ne	S15
6. Reference		S15
7. NMR Spectra	S1 6	5-S39

General experimental: All reactions were carried out in air. Solvents were dried and degassed by the standard methods. Benzene suflonamide, *N*,*N*-dimethyl aniline and the additives used in this reaction were obtained from commercial sources and used without further purification. *N*,*N*-disubstituted aniline derivatives were prepared according to the reference.¹ Flash column chromatography was performed using silica gel (300–400 mesh). Analytical thin-layer chromatography was performed using glass plates pre-coated with 200–300 mesh silica gel impregnated with a fluorescent indicator (254 nm). NMR spectra were recorded in CDCl₃ on a Varian Inova-400 NMR spectrometer (300 or 400 MHz) with TMS as an internal reference. Products were characterized by comparison of ¹H NMR, ¹³C NMR and TOF-MS data in the literatures.

General procedure for the preparation of benzene-substituted suffonamide.² To a Schlenk tube equipped with a magnetic stir bar was added benzene-substituted sulfuryl chloride (1.46 mmol) and ammonium hydroxide (4.0 mL) in air. The reaction mixture was kept stirring at 0 °C for 3-4 hours. At the end of the reaction, the aqueous layer was extracted with ether and washed with water and brine, the organic layer was dried with anhydrous Na₂SO₄, and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography gel (eluent: Hexanes/EtOAc = 90:10 to 80:20) to afford the pure product sulfonamide **1** in 80%~90% yield.

General procedure for the NaI-catalyzed oxidative de-tetra-hydrogenative cross-coupling reactions. To a Schlenk tube equipped with a magnetic stir bar was added sulfonamide 1 (0.5 mmol), 2 aniline (2.1 mmol), NaI (sodiumiodide, 0.01 mmol, 15.0 mg), TBHP (*tert*-butyl hydroperoxide, 5-6 M in decane, 1.5 mmol, 0.27 mL), 1,10-phenanthroline monohydrate (0.05 mmol, 9.0 mg) and ethyl acetate (2.0 mL). The reaction mixture was kept stirring at 80 °C for 12 hours. At the end of the reaction, the reaction mixture was cooled to room temperature. After removal of the solvent, the residue was purified to column chromatography on silica gel (eluent: Hexanes/EtOAc = 90:10 to 80:20) to give the pure product **3**.

(E)-N-Methyl-N-phenyl-N'-(phenylsulfonyl)formimidamide

Yellow solid; mp: 102-103 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.57 (s, 1H), 7.96-7.93 (m, 2H), 7.54-7.52 (m, 1H), 7.51-7.47 (m, 2H), 7.45-7.41 (m, 2H), 7.34-7.30 (m, 1H), 7.21-7.19 (m, 2H), 3.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 158.6, 143.2, 141.8, 132.2, 129.9, 128.9, 127.5, 126.7, 122.1, 36.1; HRMS (TOF MS Cl⁺) [M+H]⁺ calculated for C₁₄H₁₅N₂O₂S 275.0854, found 275.0859.

(E)-N-Methyl-N'-(phenylsulfonyl)-N-p-tolylformimidamide

Yellow solid; mp: 105-106 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.55 (s, 1H), 7.97-7.95 (m, 2H), 7.56-7.54 (m, 1H), 7.53-7.49 (m, 2H), 7.24 (d, *J* = 4.0 Hz, 2H), 7.10 (d, *J* = 8.8 Hz, 2H), 3.44 (s, 3H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 158.5, 141.9, 140.8, 137.5, 132.1, 130.4, 128.8, 126.7, 122.1, 36.3, 20.9; HRMS (TOF MS Cl⁺) [M+H]⁺ calculated for C₁₅H₁₇N₂O₂S 289.1011, found 289.1018.

(E)-N-(4-Fluorophenyl)-N-methyl-N'-(phenylsulfonyl)formimidamide

Yellow solid; mp: 120-121 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.51(s, 1H), 7.95 (d, J = 6.8 Hz, 2H), 7.59-7.55 (m, 1H), 7.53-7.49(m, 2H), 7.22-7.19 (m, 2H), 7.16-7.12 (m, 2H), 3.44(s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 161.5 (d, J = 250.0 Hz), 158.5, 141.6, 139.4, 132.3, 128.9, 126.7, 124.4 (d, J = 8.6 Hz), 116.8 (d, J = 22.9 Hz), 36.6; HRMS (TOF MS Cl⁺) [M+H]⁺ calculated for C₁₄H₁₄FN₂O₂S 293.0760, found 293.0771.

(E)-N-(3-Bromophenyl)-N-methyl-N'-(phenylsulfonyl)formimidamide

Yellow solid; mp: 128-130°C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.58 (s, 1H), 7.96-7.94 (m, 2H), 7.57-7.55 (m, 1H), 7.53-7.49 (m, 2H), 7.47-7.45 (m, 1H), 7.38 (t, *J* = 6.0 Hz, 1H), 7.32-7.28 (m, 1H), 7.18-7.15 (m, 1H), 3.44(s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 158.3, 144.3, 141.4, 132.4, 131.2, 130.4, 128.9, 126.8, 125.1, 123.4, 120.6, 36.0; HRMS (TOF MS Cl⁺) [M+H]⁺ calculated for C₁₄H₁₄BrN₂O₂S 352.9959, found 352.9968.

(E)-N-(4-Bromophenyl)-N-methyl-N'-(phenylsulfonyl)formimidamide

Yellow solid; mp: 128-129 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.55 (s, 1H), 7.93 (d, J = 7.2 Hz, 2H), 7.55-7.47 (m, 5H), 7.09 (d, J = 8.4 Hz, 2H), 3.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 158.2, 142.2, 141.5, 133.0, 132.4, 128.9, 126.7, 123.6, 120.8, 36.0; HRMS (TOF MS Cl⁺) [M+H]⁺ calculated for C₁₄H₁₄BrN₂O₂S 352.9959, found 352.9962.

(E)-N-(3-Chlorophenyl)-N-methyl-N'-(phenylsulfonyl)formimidamide

Yellow solid; mp: 124-125 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.58 (s, 1H), 7.94 (d, J = 7.2 Hz, 2H), 7.56-7.48 (m, 3H), 7.39-7.35 (m, 1H), 7.31-7.28 (m, 1H), 7.22(t, J = 2.0 Hz, 1H), 7.13-7.10 (m, 1H), 3.43(s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 158.3, 144.2, 141.4, 135.5, 132.4, 131.0, 128.9, 127.5, 126.7, 122.2, 120.1, 36.0; HRMS (TOF MS Cl⁺) [M+H]⁺ calculated for C₁₄H₁₄ClN₂O₂S 309.0465, found 309.0466.

(E)-N-(2-Chlorophenyl)-N-methyl-N'-(phenylsulfonyl)formimidamide

Yellow oil; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.32 (s, 1H), 7.97-7.95 (m,2H), 7.58-7.50 (m, 4H), 7.40-7.38 (m, 2H), 7.31-7.28(m, 1H), 3.28 (s, 3H); ¹³C NMR (100 MHz, ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 160.1, 141.7, 140.5, 132.2, 131.4, 131.0, 130.2, 128.8, 128.3, 126.8, 37.1; HRMS (TOF MS Cl⁺) [M+H]⁺ calculated for C₁₄H₁₄ClN₂O₂S 309.0465, found 309.0466.

(E)-N-(4-Chlorophenyl)-N-methyl-N'-(phenylsulfonyl)formimidamide

Yellow solid; mp: 110-111 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.56 (s, 1H), 7.96-7.94 (m, 2H), 7.57-7.49 (m, 3H), 7.43-7.40 (m, 2H), 7.18-7.15 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 158.3, 141.7, 141.5, 133.1, 132.3, 130.0, 128.9, 126.7, 123.3, 36.1; HRMS (TOF MS Cl⁺) [M+H]⁺ calculated for C₁₄H₁₄ClN₂O₂S 309.0465, found 309.0467.

(E)-N-Methyl-N-(4-nitrophenyl)-N'-(phenylsulfonyl)formimidamide

Yellow solid; mp: 128-130 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.70 (s, 1H), 8.20-8.17 (m, 1H), 8.10 (t, *J* = 2.0 Hz, 1H), 7.96-7.94 (m, 2H), 7.69-7.65 (m, 1H), 7.62-7.57 (m, 2H), 7.54-7.51 (m, 2H), 3.53 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 158.2, 149.0, 144.1, 141.0, 132.6, 131.0, 129.0, 127.3, 126.8, 121.8, 116.6, 35.9; HRMS (TOF MS Cl⁺) [M+H]⁺ calculated for C₁₄H₁₄N₃O₄S 320.0705, found 320.0709.

(E)-N-Methyl-N-phenyl-N'-tosylformimidamide

Yellow solid; mp: 108-110 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.58 (s, 1H), 7.84 (d, J = 8.0 Hz, 2H), 7.46-7.42 (m, 2H), 7.35-7.28 (m, 3H), 7.22-7.20 (m, 2H), 3.45(s, 3H), 2.43(s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 158.4, 143.2, 142.9, 138.9, 129.9, 129.5, 127.3, 126.8, 122.1, 36.1, 21.5; HRMS (TOF MS Cl⁺) [M+H]⁺ calculated for C₁₅H₁₇N₂O₂S 289.1011, found 289.1013.

(E)-N'-(4-Methoxyphenylsulfonyl)-N-methyl-N-phenylformimidamide

Yellow solid; mp: 101-104 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.56 (s, 1H), 7.87 (d, J = 8.8 Hz, 2H), 7.45-7.44 (m, 2H), 7.33-7.28 (m, 1H), 7.20 (d, J = 7.6 Hz, 2H), 6.97 (d, J = 8.8 Hz, 2H), 3.85 (s, 3H), 3.44 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 162.6, 158.2, 143.3, 133.6, 129.9, 128.8, 127.3, 122.0, 114.0, 55.6, 36.0; HRMS (TOF MS Cl⁺) [M+H]⁺ calculated for C₁₅H₁₇N₂O₃S 305.0960, found 305.0971.

(E)-N'-(4-Fluorophenylsulfonyl)-N-methyl-N-phenylformimidamide

Yellow solid; mp: 125-128 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.57 (s, 1H), 7.98-7.95 (m, 2H), 7.47-7.43 (m, 2H), 7.37-7.33 (m, 1H), 7.23-7.21 (m, 2H), 7.20-7.15 (m, 2H), 3.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 164.9 (d, J = 252 Hz), 158.5, 143.1, 137.9, 129.9, 129.5 (d, J = 9.2 Hz), 127.5, 122.2, 116.0 (d, J = 22.4 Hz), 36.2; HRMS (TOF MS Cl⁺) [M+H]⁺ calculated for C₁₄H₁₄FN₂O₂S 293.0760, found 293.0769.

(E)-N'-(3-Bromophenylsulfonyl)-N-methyl-N-phenylformimidamide

Yellow solid; mp: 99-100 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.54(s, 1H), 8.07 (t, J = 2.0 Hz, 1H), 7.89-7.86 (m, 1H), 7.67-7.64 (m, 1H), 7.46-7.41(m, 2H), 7.37-7.32 (m, 2H), 7.23-7.20 (m, 2H), 3.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 158.7, 143.7, 143.0, 135.2, 130.5, 130.0, 129.7, 127.7, 125.3, 122.7, 122.2, 36.3; HRMS (TOF MS Cl⁺) [M+H]⁺ calculated for C₁₄H₁₄BrN₂O₂S 352.9959, found 352.9963.

(E)-N'-(4-Chlorophenylsulfonyl)-N-methyl-N-phenylformimidamide

Yellow solid; mp: 96-99 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.56 (s, 1H), 7.99 (d, J = 8.4 Hz, 2H), 7.48-7.43 (m, 4H), 7.36-7.33 (m, 1H), 7.23-7.21 (m, 2H), 3.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 158.6, 143.1, 140.4, 138.6, 129.9, 129.1, 128.2, 127.6, 122.2, 36.2; HRMS (TOF MS Cl⁺) [M+H]⁺ calculated for C₁₄H₁₄ClN₂O₂S 309.0465, found 309.0466.

(E)-N'-(4-Bromophenylsulfonyl)-N-methyl-N-phenylformimidamide

Yellow solid; mp: 105-106 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.57 (s, 1H), 7.82 (d, J = 8.8 Hz, 2H), 7.65 (d, J = 8.4 Hz, 2H), 7.48 -7.44 (m, 2H), 7.38-7.34 (m, 1H), 7.24-7.21 (m, 2H), 3.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 158.6, 143.1, 140.9, 132.1, 129.9, 128.4, 127.6, 127.1, 122.2, 36.2; HRMS (TOF MS Cl⁺) [M+H]⁺ calculated for C₁₄H₁₄BrN₂O₂S 352.9959, found 352.9970.

(E)-N-(4-(N-((Methyl(phenyl)amino)methylene)sulfamoyl)phenyl)acetamide

Yellow solid; mp: 200-203 °C; ¹H NMR (400 MHz, DMSO) (δ , ppm) 10.32 (s, 1H), 8.48(s, 1H), 7.82-7.74 (m, 4H), 7.50-7.43 (m, 4H), 7.37-7.34 (m, 1H), 3.38 (s, 3H), 2.09 (s, 3H); ¹³C NMR (100 MHz, DMSO) (δ , ppm) 169.4, 158.8, 143.5, 143.1, 136.0, 130.1, 128.0, 127.4, 122.5, 119.0, 36.0, 24.6; HRMS (TOF MS Cl⁺) [M+H]⁺ calculated for C₁₆H₁₈N₃O₃S 332.1069, found 332.1078.

(E) - N - Methyl - N - phenyl - N' - (4 - (trifluoromethyl) phenyl sulfonyl) for mimidamide

Yellow solid; mp: 102-104 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.57 (s, 1H), 8.07 (d, J = 8.4 Hz, 2H), 7.75 (d, J = 8.4 Hz, 2H), 7.47-7.43 (m, 2H), 7.37-7.33 (m, 1H), 7.23-7.21 (m, 2H), 3.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 158.9, 145.4, 143.0, 133.8 (d, J = 32.7 Hz), 130.0, 127.8, 127.3, 126.0 (q, J = 3.7 Hz), 122.3, 36.3; HRMS (TOF MS Cl⁺) [M+H]⁺ calculated for C₁₅H₁₄F₃N₂O₂S 343.0728, found 343.0730.

(E)-N-Methyl-N'-(4-nitrophenylsulfonyl)-N-phenylformimidamide

Yellow solid; mp: 148-149 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.58 (s, 1H), 8.35 (d. *J* = 8.8 Hz, 2H), 8.14 (d, *J* = 9.2 Hz, 2H), 7.49-7.45 (m, 2H), 7.40-7.36 (m, 1H), 7.25-7.23 (m, 2H), 3.49 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 159.0, 149.8, 147.6, 142.9, 130.0, 128.1, 127.9, 124.1, 122.3, 36.5; HRMS (TOF MS Cl⁺) [M+H]⁺ calculated for C₁₄H₁₄N₃O₄S 320.0705, found 320.0708.

(E)-N-Methyl-N'-(naphthalen-2-ylsulfonyl)-N-phenylformimidamide

Yellow solid; mp: 132-134 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.63 (s, 1H), 8.52 (s, 1H), 7.96-7.88 (m, 4H), 7.63-7.56 (m, 2H), 7.45-7.41 (m, 2H), 7.34-7.30 (m, 1H), 7.21-7.19 (m, 2H), 3.45 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 158.6, 143.2, 138.7, 134.7, 132.2, 129.9, 129.3, 129.1, 128.5, 127.9, 127.5, 127.4, 127.3, 122.6, 122.1, 36.2; HRMS (TOF MS Cl⁺) [M+H]⁺ calculated for C₁₈H₁₇N₂O₂S 325.1011, found 325.1017.

(E)-N'-(Mesitylsulfonyl)-N-methyl-N-phenylformimidamide

Yellow solid; mp: 151-152 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.58 (s, 1H), 7.44-7.40 (m, 2H), 7.33-7.29 (m, 1H), 7.19-7.17 (m, 2H), 6.94 (s, 2H), 3.43 (s, 3H), 2.71 (s, 6H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 157.7, 143.4, 141.7, 138.8, 135.8, 131.6, 129.9, 127.2, 122.0, 36.0, 23.0, 20.9; HRMS (TOF MS Cl⁺) [M+H]⁺ calculated for C₁₇H₂₁N₂O₂S 317.1324, found 317.1329.

(E) - N - Methyl - N - phenyl - N' - (thiophen - 2 - ylsulfonyl) for mimidamide

Yellow solid; mp: 105-106 °C; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 8.54 (s, 1H), 7.65-7.64 (m, 1H), 7.56-7.55 (m, 1H), 7.46-7.42 (m, 2H), 7.35-7.31 (m, 1H), 7.21-7.19 (m, 2H), 7.07-7.04 (m, 1H), 3.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 158.6, 143.1, 143.0, 131.4, 131.2, 129.9, 127.6, 127.2, 122.2, 36.3; HRMS (TOF MS Cl⁺) [M+H]⁺ calculated for C₁₂H₁₃N₂O₂S₂ 281.0418, found 281.0426.

N-((Methyl(phenyl)amino)methyl)benzamide

White solid; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.73-7.71 (m, 2H), 7.50-7.46 (m, 1H), 7.41-7.37 (m, 2H), 7.30-7.25 (m, 2H), 6.87-6.80 (m, 3H), 6.64 (s, 1H), 5.11 (d, *J* = 5.6 Hz, 2H), 3.06 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 168.0, 147.9, 134.1, 131.7, 129.5, 128.6, 127.0, 118.3, 113.3, 58.2, 38.0.

2-(Methyl(phenyl)amino)acetonitrile

Yellow oil; ¹H NMR (400 MHz, CDCl₃) (δ , ppm) 7.38-7.34 (m, 2H), 6.97 (t, J = 7.2 Hz, 1H), 6.91 (d, J = 8.0 Hz, 2H), 4.19 (s, 1H), 3.03 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) (δ , ppm) 147.8, 129.5, 120.2, 115.6, 114.9, 42.3, 39.3.

Mechanism Study of the Ligand

We collected the reaction conversion data at 1.5 h, 3.5 h, 5.5 h and 7.5 h for both reactions, and the results are summarized below. With these data, we found that, at various reaction times, the ratio of 3a:C is almost idential either in the reaction with or without ligand (see the red part in the Table below, and determined from the ratio of integrated absorptions in ¹H NMR spectra that corresponded to the methyl groups with crude reaction mixture); however, the ratio of 3a: 2a or C:2a *in the reaction with the ligand is higher then the one without the ligand* (see the blue part in the Table below). Although we are still not sure how exactly the ligand assists the first part of the transforamtion to form the intermedate C

∕N∕ Ph	+ PhSO ₂ NH ₂ $\xrightarrow{[O]}$ N with or without P	I∕∕NHSO₂Ph→	N NSO ₂ Ph Ph
2 a	1a ^{Phen}	С	3a
Time	With ligand (3a : C : 2 a)	Without ligand (3	a:C:2a)
1.5 h	1.0:1.4:13.7	1.0:1.4:18.2	2
3.5 h	1.0:0.7:10.0	1.0: <mark>0.6:11.2</mark>	2
5.5 h	1.0:0.4:8.1	1.0:0.4:10.9	9
7.5 h	1.0:0.2:7.2	1.0: <mark>0.1</mark> :8.3	

Intermediates C Identification

Proton NMR observation:

HRMS report of the observation of the intermediate C:

HRMS Observation of the Product from N,N-Diethylaniline

Reference:

- 1 L. S. Kristen, C. O. Allie and B. F. Matthew, J. Am. Chem. Soc., 2011, 133, 16970.
- 2 (a) W. J. Kerr, M. Reid and T. Tuttle, ACS Catal., 2015, 5, 402; (b) E. Yuriev, D. C.
- M. Kong and M. N. Iskander, Eur. J. Med. Chem., 2004, 39, 835.

-\$34-

