A series of polyoxometalate-based compounds including infinite Ag

belts and circles constructed by two tolyl-1H-tetrazole isomers

Ai-xiang Tian,* Xue Hou, Jun Ying, Yang Yang, Ya-li Ning, Tian-jiao Li, Xiu-li Wang*

Figures

Fig. S1. The coordination modes of PMo_{12} in 1 (a), PW_{12} anion in 2 (b) and 3 (c).

Fig. S2. The 2D network of 3.

Fig. S3. The IR spectra of compounds 1–3.

Fig. S4. Powder X-ray diffraction patterns of compounds 1–3.

Fig. S5. Photocatalytic decomposition rates of RhB solutions under UV irradiation with the use of the title compounds 1–3 and only RhB.

Fig. S6. Absorption spectra of the RhB solution during the decomposition reaction in dark environment with the compounds **1–3** as the catalysts.

Fig. S7. Photocatalytic decomposition rate of the RhB solution in dark environment with the use of the compounds **1–3** and only RhB.

Fig. S8. Absorption spectra of the RhB solution during the decomposition reaction under UV irradiation with the presence of parent POMs PMo_{12} and PW_{12} .

Fig. S9. Photocatalytic decomposition rates of RhB solutions under UV irradiation with the use of parent POMs PMo_{12} and PW_{12} .

Fig. S10. Absorption spectra of the MB solution during the decomposition reaction under UV irradiation with the presence of compounds 1-3.

Fig. S11. Photocatalytic decomposition rates of MB solutions under UV irradiation with the use of the title compounds 1–3 and only MB.

Fig. S12. The dependence of anodic peak (II) and cathodic peak (II') currents of 1- and 2-CPEs on scan rates.

Fig. S13. Fluorescent properties of 1–3 in the solid state at room temperature.

Table. S1. Selected bond distances (Å) and angles (°) for compounds 1–3.

Compound 1			
O(40)-Ag(1)	2.550(17)	Ag(1)-N(6)	2.160(19)
Ag(1)-C(21)#3	2.43(3)	Ag(1)-C(20)#3	2.47(2)
Ag(2)-N(4)#4	2.200(18)	Ag(2)-N(17)	2.231(18)
Ag(2)-N(3)#5	2.433(18)	Ag(3)-N(20)	2.17(2)
Ag(3)-N(5)	2.220(18)	Ag(3)-N(11)	2.394(19)
Ag(4)-N(19)	2.28(2)	Ag(4)-N(15)	2.339(18)
Ag(4)-N(10)	2.358(18)	Ag(4)-C(12)	2.54(2)
Ag(5)-N(12)	2.077(17)	Ag(5)-N(12)#3	2.077(17)
Ag(6)-N(16)	2.21(2)	Ag(6)-N(2)#5	2.22(2)
Ag(6)-N(18)	2.366(19)	Ag(7)-N(8)	2.238(19)

Ag(7)-N(1) 2.31(2)	Ag(7)-C(28)#6	2.54(2)
Ag(8)-N(9) 2.225(18)	Ag(8)-N(14)	2.268(17)
Ag(8)-N(13)#7 2.296(17)	Ag(8)-Ag(8)#7	3.355(4)
C(20)-Ag(1)#3 2.47(2)	C(21)-Ag(1)#3	2.43(3)
C(28)-Ag(7)#5 2.54(2)	N(2)-Ag(6)#6	2.22(2)
N(3)-Ag(2)#6 2.433(18)	N(4)-Ag(2)#4	2.200(18)
N(13)-Ag(8)#7 2.296(17)	N(6)-Ag(1)-C(21)#3	150.1(8)
N(6)-Ag(1)-C(20)#3 167.5(8)	C(21)#3-Ag(1)-C(20)#3	33.8(8)
N(6)-Ag(1)-O(40) 85.8(6)	C(21)#3-Ag(1)-O(40)	89.0(7)
C(20)#3-Ag(1)-O(40) 106.7(7)	N(6)-Ag(1)-K(1)	53.7(5)
C(21)#3-Ag(1)-K(1) 143.8(6)	C(20)#3-Ag(1)-K(1)	132.7(7)
O(40)-Ag(1)-K(1) 60.7(4)	N(4)#4-Ag(2)-N(17)	141.4(7)
N(4)#4-Ag(2)-N(3)#5 115.4(6)	N(17)-Ag(2)-N(3)#5	102.8(6)
N(20)-Ag(3)-N(5) 130.5(7)	N(20)-Ag(3)-N(11)	115.9(7)
N(5)-Ag(3)-N(11) 102.3(7)	N(19)-Ag(4)-N(15)	101.0(6)
N(19)-Ag(4)-N(10) 112.4(7)	N(15)-Ag(4)-N(10)	110.5(7)
N(19)-Ag(4)-C(12) 106.6(8)	N(15)-Ag(4)-C(12)	123.4(7)
N(10)-Ag(4)-C(12) 103.0(8)	N(12)-Ag(5)-N(12)#3	179.998(2)
N(16)-Ag(6)-N(2)#5 143.1(7)	N(16)-Ag(6)-N(18)	112.5(7)
N(2)#5-Ag(6)-N(18) 100.9(7)	N(8)-Ag(7)-N(1)	114.4(7)
N(8)-Ag(7)-C(28)#6 135.9(7)	N(1)-Ag(7)-C(28)#6	106.9(7)
N(8)-Ag(7)-K(1) 58.2(5)	N(1)-Ag(7)-K(1)	62.0(5)
C(28)#6-Ag(7)-K(1) 165.3(5)	N(9)-Ag(8)-N(14)	115.4(6)
N(9)-Ag(8)-N(13)#7 117.1(6)	N(14)-Ag(8)-N(13)#7	127.2(6)
N(9)-Ag(8)-Ag(8)#7 167.0(4)	N(14)-Ag(8)-Ag(8)#7	60.0(4)
N(13)#7-Ag(8)-Ag(8)#7 67.5(4)	N(7)-K(1)-Ag(1)	58.5(5)
O(1W)-K(1)-Ag(1) 135.6(10)	O(8)-K(1)-Ag(1)	78.9(4)
O(11)-K(1)-Ag(1) 49.6(4)	O(23)#2-K(1)-Ag(1)	83.2(5)
N(6)-K(1)-Ag(1) 35.2(4)	C(3)-K(1)-Ag(1)	99.5(6)
N(8)-K(1)-Ag(1) 75.3(3)	O(40)-K(1)-Ag(1)	41.7(3)
C(1)-K(1)-Ag(1) 139.7(5)	Mo(4)-K(1)-Ag(1)	59.20(10)
C(11)-C(12)-Ag(4) 96.1(16)	C(13)-C(12)-Ag(4)	94.4(16)
Ag(4)-C(12)-H(12A) 114.4	C(19)-C(20)-Ag(1)#3	109.7(17)
C(21)-C(20)-Ag(1)#3 71.7(15)	Ag(1)#3-C(20)-H(20A)	88.7
C(22)-C(21)-Ag(1)#3 104.8(17)	C(20)-C(21)-Ag(1)#3	74.5(15)
Ag(1)#3-C(21)-H(21A) 90.7	C(27)-C(28)-Ag(7)#5	84.7(13)
C(29)-C(28)-Ag(7)#5 90.8(16)	Ag(7)#5-C(28)-H(28A)	94.5
N(2)-N(1)-Ag(7) 127.5(16)	C(1)-N(1)-Ag(7)	123.3(17)
N(3)-N(2)-Ag(6)#6 127.7(15)	N(1)-N(2)-Ag(6)#6	123.6(16)
N(2)-N(3)-Ag(2)#6 126.4(15)	N(4)-N(3)-Ag(2)#6	120.1(14)
C(1)-N(4)-Ag(2)#4 134.9(16)	N(3)-N(4)-Ag(2)#4	119.3(13)
N(6)-N(5)-Ag(3) 129.1(14)	C(9)-N(5)-Ag(3)	123.3(15)
N(5)-N(6)-Ag(1) 122.2(14)	N(7)-N(6)-Ag(1)	130.4(13)
C(9)-N(8)-Ag(7) 139.6(16)	N(7)-N(8)-Ag(7)	114.3(13)

C(17)-N(9)-Ag(8)	134.4(15)	N(10)-N(9)-Ag(8)	117.8(13)
N(11)-N(10)-Ag(4)	122.9(14)	N(9)-N(10)-Ag(4)	122.5(13)
N(10)-N(11)-Ag(3)	110.5(13)	N(12)-N(11)-Ag(3)	141.2(13)
C(17)-N(12)-Ag(5)	126.5(15)	N(11)-N(12)-Ag(5)	125.0(14)
N(14)-N(13)-Ag(8)#7	105.2(12)	C(25)-N(13)-Ag(8)#7	148.8(14)
N(15)-N(14)-Ag(8)	125.9(14)	N(13)-N(14)-Ag(8)	125.6(12)
N(14)-N(15)-Ag(4)	114.2(14)	N(16)-N(15)-Ag(4)	131.7(16)
N(15)-N(16)-Ag(6)	117.9(15)	C(25)-N(16)-Ag(6)	136.2(16)
C(33)-N(17)-Ag(2)	132.3(15)	N(18)-N(17)-Ag(2)	116.7(14)
N(19)-N(18)-Ag(6)	117.8(14)	N(17)-N(18)-Ag(6)	131.0(15)
N(18)-N(19)-Ag(4)	129.9(15)	N(20)-N(19)-Ag(4)	120.8(14)
C(33)-N(20)-Ag(3)	136.5(16)	N(19)-N(20)-Ag(3)	116.3(14)
O(40)-Ag(1)	2.550(17)	Ag(1)-N(6)	2.160(19)
Ag(1)-C(21)#3	2.43(3)	Ag(1)-C(20)#3	2.47(2)
Ag(2)-N(4)#4	2.200(18)	Ag(2)-N(17)	2.231(18)
Ag(2)-N(3)#5	2.433(18)	Ag(3)-N(20)	2.17(2)
Ag(3)-N(5)	2.220(18)	Ag(3)-N(11)	2.394(19)
Ag(4)-N(19)	2.28(2)	Ag(4)-N(15)	2.339(18)
Ag(4)-N(10)	2.358(18)	Ag(4)-C(12)	2.54(2)
Ag(5)-N(12)	2.077(17)	Ag(5)-N(12)#3	2.077(17)
Ag(6)-N(16)	2.21(2)	Ag(6)-N(2)#5	2.22(2)
Ag(6)-N(18)	2.366(19)	Ag(7)-N(8)	2.238(19)
Ag(7)-N(1)	2.31(2)	Ag(7)-C(28)#6	2.54(2)
Ag(8)-N(9)	2.225(18)	Ag(8)-N(14)	2.268(17)
Ag(8)-N(13)#7	2.296(17)	Ag(8)-Ag(8)#7	3.355(4)
C(20)-Ag(1)#3	2.47(2)	C(21)-Ag(1)#3	2.43(3)
C(28)-Ag(7)#5	2.54(2)	N(2)-Ag(6)#6	2.22(2)
N(3)-Ag(2)#6	2.433(18)	N(4)-Ag(2)#4	2.200(18)
N(13)-Ag(8)#7	2.296(17)	N(6)-Ag(1)-C(21)#3	150.1(8)
N(6)-Ag(1)-C(20)#3	167.5(8)	C(21)#3-Ag(1)-C(20)#3	33.8(8)
N(6)-Ag(1)-O(40)	85.8(6)	C(21)#3-Ag(1)-O(40)	89.0(7)
C(20)#3-Ag(1)-O(40)	106.7(7)	N(6)-Ag(1)-K(1)	53.7(5)
C(21)#3-Ag(1)-K(1)	143.8(6)	C(20)#3-Ag(1)-K(1)	132.7(7)
O(40)-Ag(1)-K(1)	60.7(4)	N(4)#4-Ag(2)-N(17)	141.4(7)
N(4)#4-Ag(2)-N(3)#5	115.4(6)	N(17)-Ag(2)-N(3)#5	102.8(6)
N(20)-Ag(3)-N(5)	130.5(7)	N(20)-Ag(3)-N(11)	115.9(7)
N(5)-Ag(3)-N(11)	102.3(7)	N(19)-Ag(4)-N(15)	101.0(6)
N(19)-Ag(4)-N(10)	112.4(7)	N(15)-Ag(4)-N(10)	110.5(7)
N(19)-Ag(4)-C(12)	106.6(8)	N(15)-Ag(4)-C(12)	123.4(7)
N(10)-Ag(4)-C(12)	103.0(8)	N(12)-Ag(5)-N(12)#3	179.998(2)
N(16)-Ag(6)-N(2)#5	143.1(7)	N(16)-Ag(6)-N(18)	112.5(7)
N(2)#5-Ag(6)-N(18)	100.9(7)	N(8)-Ag(7)-N(1)	114.4(7)
N(8)-Ag(7)-C(28)#6	135.9(7)	N(1)-Ag(7)-C(28)#6	106.9(7)
N(8)-Ag(7)-K(1)	58.2(5)	N(1)-Ag(7)-K(1)	62.0(5)

C(28)#6-Ag(7)-K(1)	165.3(5)	N(9)-Ag(8)-N(14)	115.4(6)
N(9)-Ag(8)-N(13)#7	117.1(6)	N(14)-Ag(8)-N(13)#7	127.2(6)
N(9)-Ag(8)-Ag(8)#7	167.0(4)	N(14)-Ag(8)-Ag(8)#7	60.0(4)
N(13)#7-Ag(8)-Ag(8)#7	67.5(4)	N(7)-K(1)-Ag(1)	58.5(5)
O(1W)-K(1)-Ag(1)	135.6(10)	O(8)-K(1)-Ag(1)	78.9(4)
O(11)-K(1)-Ag(1)	49.6(4)	O(23)#2-K(1)-Ag(1)	83.2(5)
N(6)-K(1)-Ag(1)	35.2(4)	C(3)-K(1)-Ag(1)	99.5(6)
N(8)-K(1)-Ag(1)	75.3(3)	O(40)-K(1)-Ag(1)	41.7(3)
C(1)-K(1)-Ag(1)	139.7(5)	Mo(4)-K(1)-Ag(1)	59.20(10)
C(11)-C(12)-Ag(4)	96.1(16)	C(13)-C(12)-Ag(4)	94.4(16)
Ag(4)-C(12)-H(12A)	114.4	C(19)-C(20)-Ag(1)#3	109.7(17)
C(21)-C(20)-Ag(1)#3	71.7(15)	Ag(1)#3-C(20)-H(20A)	88.7
C(22)-C(21)-Ag(1)#3	104.8(17)	C(20)-C(21)-Ag(1)#3	74.5(15)
Ag(1)#3-C(21)-H(21A)	90.7	C(27)-C(28)-Ag(7)#5	84.7(13)
C(29)-C(28)-Ag(7)#5	90.8(16)	Ag(7)#5-C(28)-H(28A)	94.5
N(2)-N(1)-Ag(7)	127.5(16)	C(1)-N(1)-Ag(7)	123.3(17)
N(3)-N(2)-Ag(6)#6	127.7(15)	N(1)-N(2)-Ag(6)#6	123.6(16)
N(2)-N(3)-Ag(2)#6	126.4(15)	N(4)-N(3)-Ag(2)#6	120.1(14)
C(1)-N(4)-Ag(2)#4	134.9(16)	N(3)-N(4)-Ag(2)#4	119.3(13)
N(6)-N(5)-Ag(3)	129.1(14)	C(9)-N(5)-Ag(3)	123.3(15)
N(5)-N(6)-Ag(1)	122.2(14)	N(7)-N(6)-Ag(1)	130.4(13)
C(9)-N(8)-Ag(7)	139.6(16)	N(7)-N(8)-Ag(7)	114.3(13)
C(17)-N(9)-Ag(8)	134.4(15)	N(10)-N(9)-Ag(8)	117.8(13)
N(11)-N(10)-Ag(4)	122.9(14)	N(9)-N(10)-Ag(4)	122.5(13)
N(10)-N(11)-Ag(3)	110.5(13)	N(12)-N(11)-Ag(3)	141.2(13)
C(17)-N(12)-Ag(5)	126.5(15)	N(11)-N(12)-Ag(5)	125.0(14)
N(14)-N(13)-Ag(8)#7	105.2(12)	C(25)-N(13)-Ag(8)#7	148.8(14)
N(15)-N(14)-Ag(8)	125.9(14)	N(13)-N(14)-Ag(8)	125.6(12)
N(14)-N(15)-Ag(4)	114.2(14)	N(16)-N(15)-Ag(4)	131.7(16)
N(15)-N(16)-Ag(6)	117.9(15)	C(25)-N(16)-Ag(6)	136.2(16)
C(33)-N(17)-Ag(2)	132.3(15)	N(18)-N(17)-Ag(2)	116.7(14)
N(19)-N(18)-Ag(6)	117.8(14)	N(17)-N(18)-Ag(6)	131.0(15)
N(18)-N(19)-Ag(4)	129.9(15)	N(20)-N(19)-Ag(4)	120.8(14)
C(33)-N(20)-Ag(3)	136.5(16)	N(19)-N(20)-Ag(3)	116.3(14)
O(40)-Ag(1)	2.550(17)	Ag(1)-N(6)	2.160(19)
Symmetry code: #1 -x+3/2, -y-	+1/2, -z+1 #2 -x+1/2,	-y+1/2, -z+1 #3 -x+1, y, -z+3/2	
	Cor	npound 2	
O(14)-Ag(4)#2	2.591(10)	O(19)-Ag(4)	2.350(10)
Ag(1)-N(6)	2.127(10)	Ag(1)-N(6)#3	2.127(10)
Ag(1)-Ag(2)	3.2220(14)	Ag(1)-Ag(2)#3	3.2221(14)
Ag(2)-N(4)	2.143(10)	Ag(2)-N(5)#3	2.144(12)
Ag(3)-N(3)	2.290(10)	Ag(3)-N(7)	2.320(10)
Ag(3)-N(2)#4	2.372(11)	Ag(4)-N(1)#4	2.217(10)
Ag(4)-N(8)	2.276(10)	Ag(4)-O(14)#2	2.591(10)

N(1)-Ag(4)#4	2.217(10)	N(2)-Ag(3)#4	2.372(11)
N(5)-Ag(2)#3	2.144(12)	W(2)-O(14)-Ag(4)#2	126.2(5)
W(4)-O(19)-Ag(4)	170.7(6)	N(6)-Ag(1)-N(6)#3	180.000(1)
N(6)- $Ag(1)$ - $Ag(2)$	115.9(3)	N(6)#3-Ag(1)-Ag(2)	64.1(3)
N(6)-Ag(1)-Ag(2)#3	64.1(3)	N(6)#3-Ag(1)-Ag(2)#3	115.9(3)
Ag(2)-Ag(1)-Ag(2)#3	180.0	N(4)-Ag(2)-N(5)#3	169.1(5)
N(4)-Ag(2)-Ag(1)	119.8(3)	N(5)#3-Ag(2)-Ag(1)	65.3(3)
N(3)-Ag(3)-N(7)	145.8(4)	N(3)-Ag(3)-N(2)#4	102.3(3)
N(7)-Ag(3)-N(2)#4	111.9(4)	N(1)#4-Ag(4)-N(8)	113.6(4)
N(1)#4-Ag(4)-O(19)	125.5(4)	N(8)-Ag(4)-O(19)	120.8(4)
N(1)#4-Ag(4)-O(14)#2	102.9(4)	N(8)-Ag(4)-O(14)#2	80.7(4)
O(19)-Ag(4)-O(14)#2	89.4(3)	C(7)-N(1)-Ag(4)#4	127.9(8)
N(2)-N(1)-Ag(4)#4	128.0(8)	N(3)-N(2)-Ag(3)#4	130.7(8)
N(1)-N(2)-Ag(3)#4	117.6(7)	N(2)-N(3)-Ag(3)	126.7(8)
N(4)-N(3)-Ag(3)	124.1(7)	C(7)-N(4)-Ag(2)	120.9(9)
N(3)-N(4)-Ag(2)	132.4(7)	C(15)-N(5)-Ag(2)#3	141.3(9)
N(6)-N(5)-Ag(2)#3	113.2(8)	N(7)-N(6)-Ag(1)	134.6(8)
N(5)-N(6)-Ag(1)	117.3(8)	N(6)-N(7)-Ag(3)	124.5(8)
N(8)-N(7)-Ag(3)	123.7(8)	N(7)-N(8)-Ag(4)	122.8(7)
C(15)-N(8)-Ag(4)	124.7(8)		
Symmetry code: $\#1 - x + 1/2$, -y	/+3/2, -z+1 #2 -x, y, -z	z+3/2 #3 -x+1/2, -y+1/2, -z+1	
	Co	mpound 3	
Ag(1)-N(24)	2.201(10)	Ag(1)-N(20)#1	2.256(9)
Ag(1)-N(27)#2	2.423(10)	Ag(2)-N(21)	2.192(11)
Ag(2)-N(28)	2.215(9)	Ag(2)-N(19)#3	2.598(10)
Ag(3)-N(12)	2.215(9)	Ag(3)-N(13)	2.236(9)
Ag(3)-N(31)	2.496(11)	Ag(4)-N(2)#4	2.180(8)
Ag(4)-N(30)	2.191(9)	Ag(4)-N(11)	2.271(9)
Ag(5A)-Ag(5C)	1.339(4)	Ag(5A)-Ag(5B)	1.460(4)
Ag(5A)-N(18)	2.300(11)	Ag(5A)-N(17)#3	2.381(9)
Ag(5A)-N(22)#3	2.476(10)	Ag(5A)-N(16)#3	2.505(10)
Ag(5C)-N(22)#3	2.240(10)	Ag(5C)-N(17)#3	2.266(10)
Ag(5C)-Ag(5B)	2.774(5)	Ag(6)-N(8)	2.242(8)
Ag(6)-N(1)#4	2.270(9)	Ag(6)-N(10)	2.401(9)
Ag(7)-N(4)	2.197(10)	Ag(7)-N(9)	2.199(9)
Ag(7)-N(7)	2.370(9)	Ag(8)-N(5)#5	2.231(9)
Ag(8)-N(3)	2.296(8)	Ag(8)-N(6)	2.346(10)
Ag(9)-N(25)	2.222(10)	Ag(9)-N(32)#6	2.242(14)
Ag(9)-N(14)#6	2.269(11)	Ag(10)-N(15)	2.186(10)
Ag(10)-N(26)#2	2.214(11)	Ag(10)-N(23)	2.243(9)
N(1)-Ag(6)#7	2.270(9)	N(2)-Ag(4)#7	2.180(8)
N(5)-Ag(8)#5	2.231(9)	N(14)-Ag(9)#2	2.269(11)
N(16)-Ag(5B)#3	2.048(12)	N(16)-Ag(5A)#3	2.505(10)
N(17)-Ag(5C)#3	2.266(10)	N(17)-Ag(5A)#3	2.381(9)
	× /	\sim \sim \sim \sim \sim \sim	

N(18)-Ag(5B)	2.143(11)	N(19)-Ag(2)#3	2.598(10)
N(20)-Ag(1)#8	2.256(9)	N(22)-Ag(5C)#3	2.240(10)
N(22)-Ag(5A)#3	2.476(10)	N(26)-Ag(10)#6	2.214(11)
N(27)-Ag(1)#6	N(27)-Ag(1)#6	N(32)-Ag(9)#2	2.242(14)
Ag(5B)-N(16)#3	2.048(12)	N(24)-Ag(1)-N(20)#1	149.1(3)
N(24)-Ag(1)-N(27)#2	107.9(3)	N(20)#1-Ag(1)-N(27)#2	99.8(4)
N(21)-Ag(2)-N(28)	147.8(3)	N(21)-Ag(2)-N(19)#3	98.3(3)
N(28)-Ag(2)-N(19)#3	113.6(3)	N(12)-Ag(3)-N(13)	148.7(4)
N(12)-Ag(3)-N(31)	96.8(3)	N(13)-Ag(3)-N(31)	114.3(4)
N(2)#4-Ag(4)-N(30)	139.1(4)	N(2)#4-Ag(4)-N(11)	116.6(3)
N(30)-Ag(4)-N(11)	104.3(3)	Ag(5C)-Ag(5A)-Ag(5B)	164.6(3)
Ag(5C)-Ag(5A)-N(18)	99.9(3)	Ag(5B)-Ag(5A)-N(18)	65.1(3)
Ag(5C)-Ag(5A)-N(17)#3	68.6(3)	Ag(5B)-Ag(5A)-N(17)#3	113.5(3)
N(18)-Ag(5A)-N(17)#3	116.0(3)	Ag(5C)-Ag(5A)-N(22)#3	64.0(3)
Ag(5B)-Ag(5A)-N(22)#3	120.5(3)	N(18)-Ag(5A)-N(22)#3	101.0(3)
N(17)#3-Ag(5A)-N(22)#3	123.5(4)	Ag(5C)-Ag(5A)-N(16)#3	138.5(3)
Ag(5B)-Ag(5A)-N(16)#3	54.8(3)	N(18)-Ag(5A)-N(16)#3	118.8(4)
N(17)#3-Ag(5A)-N(16)#3	80.8(3)	N(22)#3-Ag(5A)-N(16)#3	117.5(3)
Ag(5A)-Ag(5C)-N(22)#3	83.5(3)	Ag(5A)-Ag(5C)-N(17)#3	78.0(3)
N(22)#3-Ag(5C)-N(17)#3	143.5(4)	Ag(5A)-Ag(5C)-Ag(5B)	8.04(14)
N(22)#3-Ag(5C)-Ag(5B)	86.4(3)	N(17)#3-Ag(5C)-Ag(5B)	79.7(3)
N(8)-Ag(6)-N(1)#4	148.2(3)	N(8)-Ag(6)-N(10)	104.8(3)
N(1)#4-Ag(6)-N(10)	107.0(3)	N(4)-Ag(7)-N(9)	140.1(3)
N(4)-Ag(7)-N(7)	105.7(3)	N(9)-Ag(7)-N(7)	114.2(3)
N(5)#5-Ag(8)-N(3)	141.6(3)	N(5)#5-Ag(8)-N(6)	112.6(3)
N(3)-Ag(8)-N(6)	105.3(3)	N(25)-Ag(9)-N(32)#6	126.4(5)
N(25)-Ag(9)-N(14)#6	119.1(4)	N(32)#6-Ag(9)-N(14)#6	113.2(5)
N(15)-Ag(10)-N(26)#2	121.1(4)	N(15)-Ag(10)-N(23)	128.4(4)
N(26)#2-Ag(10)-N(23)	110.1(3)	C(1)-N(1)-Ag(6)#7	129.7(7)
N(2)-N(1)-Ag(6)#7	123.6(6)	N(3)-N(2)-Ag(4)#7	122.6(6)
N(1)-N(2)-Ag(4)#7	119.3(6)	N(2)-N(3)-Ag(8)	123.1(6)
N(4)-N(3)-Ag(8)	127.6(7)	C(1)-N(4)-Ag(7)	128.3(7)
N(3)-N(4)-Ag(7)	126.3(7)	C(9)-N(5)-Ag(8)#5	135.1(7)
N(6)-N(5)-Ag(8)#5	120.9(7)	N(7)-N(6)-Ag(8)	123.7(7)
N(5)-N(6)-Ag(8)	126.2(6)	N(6)-N(7)-Ag(7)	124.9(8)
N(8)-N(7)-Ag(7)	121.2(6)	C(9)-N(8)-Ag(6)	136.6(8)
N(7)-N(8)-Ag(6)	118.7(6)	C(17)-N(9)-Ag(7)	139.3(8)
N(10)-N(9)-Ag(7)	114.3(6)	N(11)-N(10)-Ag(6)	120.1(7)
N(9)-N(10)-Ag(6)	129.4(6)	N(10)-N(11)-Ag(4)	114.7(7)
N(12)-N(11)-Ag(4)	123.8(7)	N(11)-N(12)-Ag(3)	120.3(7)
C(17)-N(12)-Ag(3)	132.0(7)	C(25)-N(13)-Ag(3)	134.0(10)
N(14)-N(13)-Ag(3)	113.7(8)	N(15)-N(14)-Ag(9)#2	117.3(8)
N(13)-N(14)-Ag(9)#2	133.1(8)	N(14)-N(15)-Ag(10)	120.3(9)
N(16)-N(15)-Ag(10)	129.3(8)	N(15)-N(16)-Ag(5B)#3	125.5(8)

C(25)-N(16)-Ag(5B)#3	126.9(10)	N(15)-N(16)-Ag(5A)#3	105.5(7)
C(25)-N(16)-Ag(5A)#3	146.1(9)	Ag(5B)#3-N(16)-Ag(5A)#3	35.7(2)
C(33)-N(17)-Ag(5C)#3	135.2(9)	N(18)-N(17)-Ag(5C)#3	119.6(7)
C(33)-N(17)-Ag(5A)#3	133.5(8)	N(18)-N(17)-Ag(5A)#3	113.4(7)
Ag(5C)#3-N(17)-Ag(5A)#3	33.39(17)	N(19)-N(18)-Ag(5B)	122.0(8)
N(17)-N(18)-Ag(5B)	115.6(7)	N(19)-N(18)-Ag(5A)	122.8(8)
N(17)-N(18)-Ag(5A)	127.6(7)	Ag(5B)-N(18)-Ag(5A)	38.2(2)
N(18)-N(19)-Ag(2)#3	129.1(8)	N(20)-N(19)-Ag(2)#3	109.3(7)
C(33)-N(20)-Ag(1)#8	134.5(8)	N(19)-N(20)-Ag(1)#8	117.9(7)
C(41)-N(21)-Ag(2)	127.0(8)	N(22)-N(21)-Ag(2)	127.3(8)
N(23)-N(22)-Ag(5C)#3	116.2(7)	N(21)-N(22)-Ag(5C)#3	129.8(8)
N(21)-N(22)-Ag(5A)#3	131.7(8)	Ag(5C)#3-N(22)-Ag(5A)#3	32.51(17)
N(22)-N(23)-Ag(10)	110.7(7)	N(24)-N(23)-Ag(10)	118.5(7)
C(41)-N(24)-Ag(1)	130.8(7)	N(23)-N(24)-Ag(1)	124.6(7)
C(49)-N(25)-Ag(9)	138.9(8)	N(26)-N(25)-Ag(9)	115.1(8)
N(27)-N(26)-Ag(10)#6	128.1(8)	N(25)-N(26)-Ag(10)#6	117.3(8)
N(28)-N(27)-Ag(1)#6	131.0(7)	N(26)-N(27)-Ag(1)#6	118.6(9)
N(27)-N(28)-Ag(2)	114.3(7)	C(49)-N(28)-Ag(2)	137.7(8)
N(31)-N(30)-Ag(4)	126.6(8)	N(29)-N(30)-Ag(4)	124.0(8)
N(30)-N(31)-Ag(3)	128.3(8)	N(32)-N(31)-Ag(3)	121.3(9)
C(57)-N(32)-Ag(9)#2	133.5(11)	N(31)-N(32)-Ag(9)#2	118.4(11)
Ag(5A)-Ag(5B)-N(16)#3	89.5(4)	Ag(5A)-Ag(5B)-N(18)	76.7(3)
N(16)#3-Ag(5B)-N(18)	161.7(4)	Ag(5A)-Ag(5B)-Ag(5C)	7.37(13)
N(16)#3-Ag(5B)-Ag(5C)	96.1(3)	N(18)-Ag(5B)-Ag(5C)	69.6(3)
Symmetry code: #1 -x, -y+2, -z	#2 -x, -y+3, -z		