Supporting Information

Efficient bifunctional materials based on pyrene- and triphenylamine-functionalized dendrimers for electroluminescent devices

T. Keawin,^{*a*} N. Prachumrak,^{*b*} S. Namuangruk,^{*c*} S. Pansay,^{*a*} N. Kungwan,^{*d*} S. Maensiri,^{*e*} S. Jungsuttiwong,^{*a*} T. Sudyoadsuk^{*b*} and V. Promarak^{*b**}

^{*a*} Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand.

^b School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong, 21210 Thailand.

^c National Nanotechnology Center, 130 Thailand Science Park, Klong Luang, Pathumthani 12120, Thailand.

^d Chemistry Department, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.

^e School of Physics, Institute of Science, Suranaree University of Technology, Muang District, Nakhon Ratchasima 30000, Thailand.

*E-mail: pvinich@sut.ac.th

Content:

1. Quantum chemical calculation results	S2
2. Multiple CV scans	Sx
3. EL spectra	S9
4. ¹ H and ¹³ C NMR spectra	S10

Quantum chemical calculation results

Table S1 The calculated HOMO, LUMO and HOMO-LUMO energy gap (Δ_{H-L}) of the compounds by B3LYP/6-31G(d,p).

Compounds	HOMO (eV)	LUMO (eV)	$\Delta_{\text{H-L}}$ (eV)	E _{ex} ^a (eV/nm)
G1PYR	-5.14	-1.67	3.48	3.11 (399)
G2PYR	-5.13	-1.67	3.46	3.11 (399)
G1TPA	-4.86	-0.91	3.96	3.40 (364)
G2TPA	-4.86	-1.18	3.68	3.31 (374)

 a excition energies from ground to excited states are calculated by TD-B3LYP/6-31G(d,p) in $\rm CH_2Cl_2$ solvent

Table S2 The two lowest excitation of from ground to excited states are calculated by TD-B3LYP/6-31G(d,p) in CH_2Cl_2 solvent.

Compounds		E _{ex} ^a (eV/nm)	f	Transition
G1PYR	$S_0 \rightarrow S_1$	3.11 (399)	0.5509	0.69(H→L)+0.11(H-2→L)
	$S_0 \rightarrow S_2$	3.22 (386)	0.2298	$0.69(H \rightarrow L+1)+0.11(H-2 \rightarrow L+1)$
G2PYR	$S_0 \rightarrow S_1$	3.11 (399)	0.2200	$0.51(H \rightarrow L)+0.42(H-1 \rightarrow L+1)$
	$S_0 \rightarrow S_2$	3.11 (399)	0.8050	0.51(H→L+1)+0.43(H-1→L)
G1TPA	$S_0 \rightarrow S_1$	3.46 (358)	1.2204	$0.66(H \rightarrow L+1)+0.23(H-1 \rightarrow L+2)$
	$S_0 \rightarrow S_2$	3.49 (355)	0.0009	0.68(H→L)
G2TPA	$S_0 \rightarrow S_1$	3.31 (374)	0.0089	0.68(H→L+1)+0.19(H-4→L)
	$S_0 \rightarrow S_2$	3.36 (369)	0.0869	0.69(H-1→L)

Fig. S1 CV traces measured in CH_2Cl_2/n -Bu₄NPF₆ at scan rate of 50 mV s⁻¹

Fig. S2 Proposed oxidation and electrochemical coupling reaction of GnPYR and GnTPA under the CV experiments.

Fig. S3 EL spectra of the OELDs at different applied voltages

¹*H-NMR and* ¹³*C-NMR spectra* Compound 2

Compound G1PYR

S8

Compound G1TPA

Compound G2TPA

