Supporting Information

Insensitive 5-Nitroaminotetrazolate Ionic Liquids as Potential Liquid Energetic Materials

Yi-Fei Gao, Lei Zhang, Ling He,* Ning Tang, Wen-Li Yuan and Guo-Hong Tao* College of Chemistry, Sichuan University, Chengdu 610064 (China) Fax: (+) 86-28-85470368 E-mail: lhe@scu.edu.cn, taogh@scu.edu.cn

Index:

Figure S1–S4 Table S1–S5 X-ray crystallography data of 1

Scheme S1 The isodesmic reactions of the 1,3-dialkylimidazolium cations

Scheme S2 Born-Haber cycle for the formation of ionic liquids

Scheme S3 Combustion equations and thermochemical equations of Hess's Law for the ionic liquids 1–5

Figure S1 Molecular Structure of 1.

Figure S2. Packing Diagram of 1 Viewed down the *a*-axis.

Figure S3. Packing Diagram of 1 Viewed down the *b*-axis.

Figure S4. Packing Diagram of 1 Viewed down the *c*-axis.

Atom	X	У	Z	U(eq)
N8	4070.8(3)	5506.8(6)	131(4)	19.1(3)
N7	4395.0(3)	4824.8(6)	760(4)	19.0(3)
C2	4333.3(3)	5407.9(8)	-381(5)	20.3(3)
C4	3959.8(3)	4965.0(8)	1667(5)	23.1(4)
C3	4163.1(3)	4540.4(8)	2057(5)	22.3(4)
C6	3924.3(4)	6094.5(8)	-779(5)	25.8(4)
C5	4666.0(3)	4536.6(9)	690(6)	32.6(4)
01	4940.6(2)	1908.5(5)	8062(3)	23.7(3)
O2	4832.4(3)	981.0(5)	10368(4)	29.7(3)
N1	4171.8(3)	2441.6(6)	8569(4)	23.4(3)
N2	4159.9(3)	3044.2(7)	7224(5)	25.7(3)
N3	4396.7(3)	3237.0(6)	6167(4)	24.9(3)
N4	4569.1(3)	2749.6(6)	6831(4)	20.2(3)
N5	4505.4(3)	1662.4(6)	9452(4)	20.0(3)
N6	4765.5(3)	1524.9(6)	9275(4)	19.2(3)
C1	4429.8(3)	2262.9(7)	8299(4)	17.6(3)

Table S1 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 1. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{JJ} tensor.

Table S2 Anisotropic Displacement Parameters (Å²×10³) for 1. The Anisotropic displacement factor exponent takes the form: $-2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
N8	19.8(7)	15.9(6)	21.5(7)	1.3(6)	-0.1(6)	-0.8(5)
N7	15.6(7)	20.7(6)	20.7(7)	-1.0(6)	-0.8(6)	-0.6(5)
C2	19.4(8)	21.2(8)	20.3(8)	-0.6(6)	-1.2(6)	-4.6(6)
C4	18.1(8)	20.0(8)	31.3(9)	1.8(7)	4.6(7)	-3.5(6)
C3	21.7(9)	18.5(8)	26.6(9)	4.0(7)	2.4(7)	-1.3(6)
C6	28.0(9)	18.6(8)	30.7(10)	3.8(7)	-3.6(7)	3.0(7)
C5	16.7(9)	35.9(10)	45.1(11)	-2.1(10)	-1.1(8)	5.5(7)
01	15.1(6)	22.9(6)	33.2(7)	4.4(5)	1.1(5)	-3.4(4)
02	26.2(7)	21.5(6)	41.4(8)	10.7(6)	3.4(6)	5.7(5)
N1	17.4(7)	21.9(7)	30.9(8)	2.1(7)	0.4(6)	0.7(5)
N2	21.4(7)	22.1(7)	33.6(8)	1.0(7)	-2.2(6)	3.8(6)
N3	21.4(7)	20.2(7)	33.2(9)	2.8(7)	-1.4(6)	2.5(5)
N4	15.2(6)	18.3(6)	27.3(7)	2.7(6)	-0.7(5)	0.0(5)
N5	14.9(7)	17.8(6)	27.4(7)	1.7(6)	1.6(6)	0.0(5)
N6	18.8(7)	18.0(6)	20.7(7)	1.0(6)	0.7(5)	-1.1(5)
C1	16.1(8)	17.4(7)	19.2(7)	-1.6(7)	-2.0(6)	-2.0(6)

Table S3 Bond Lengths for 1.

Atom Atom		Length/Å	Ator	nAtom	Length/Å
N8	C2	1.325(2)	O2	N6	1.2512(17)
N8	C4	1.381(2)	N1	C1	1.330(2)
N8	C6	1.465(2)	N1	N2	1.3558(19)
N7	C2	1.326(2)	N2	N3	1.296(2)
N7	C3	1.376(2)	N3	N4	1.3500(18)
N7	C5	1.466(2)	N4	C1	1.343(2)
C4	C3	1.347(2)	N5	N6	1.3165(18)
01	N6	1.2615(17)	N5	C1	1.378(2)

Table S4 Bond Angles for 1.

Ato	nAtor	nAtom	Angle/	Ato	nAtor	nAtom	Angle/
C2	N8	C4	108.58(13)	N3	N2	N1	111.13(13)
C2	N8	C6	125.48(14)	N2	N3	N4	106.17(13)
C4	N8	C6	125.94(14)	C1	N4	N3	108.83(13)
C2	N7	C3	108.50(13)	N6	N5	C1	116.59(12)
C2	N7	C5	125.56(14)	02	N6	01	120.78(13)
C3	N7	C5	125.93(14)	02	N6	N5	116.09(13)
N8	C2	N7	108.81(14)	01	N6	N5	123.13(13)
C3	C4	N8	106.82(14)	N1	C1	N4	107.91(14)
C4	C3	N7	107.28(14)	N1	C1	N5	119.46(14)
C1	N1	N2	105.95(13)	N4	C1	N5	132.63(14)

Table S5 Torsion Angles for 1.

А	В	С	D	Angle/	А	В	С	D	Angle/
C4	N8	C2	N7	0.04(19)	N1	N2	N3	N4	0.00(19)
C6	N8	C2	N7	179.93(15)	N2	N3	N4	C1	0.09(18)
C3	N7	C2	N8	-0.07(19)	C1	N5	N6	02	179.21(14)
C5	N7	C2	N8	-179.36(16)	C1	N5	N6	01	-1.3(2)
C2	N8	C4	C3	0.02(19)	N2	N1	C1	N4	0.14(18)
C6	N8	C4	C3	-179.88(17)	N2	N1	C1	N5	-179.68(15)
N8	C4	C3	N7	-0.1(2)	N3	N4	C1	N1	-0.15(18)
C2	N7	C3	C4	0.1(2)	N3	N4	C1	N5	179.64(17)
C5	N7	C3	C4	179.36(17)	N6	N5	C1	N1	-176.84(15)

C1 N1 N2 N3	-0.09(19)	N6 N5 C1 N4	3.4(3)
-------------	-----------	-------------	--------

Atom	X	у	Z	U(eq)
H2	4457	5706	-1400	24
H4	3775	4903	2322	28
Н3	4149	4122	3044	27
H6A	3870	6314	1449	39
H6B	3762	5988	-2189	39
H6C	4042	6375	-2204	39
H5A	4724	4482	-1822	49
H5B	4661	4119	1890	49
H5C	4794	4817	1956	49
H4A	4744	2751	6375	24

Table S6 Hydrogen Atom Coordinates (Å×10 ⁴) and Isotropic Displacement Parameters (Å ² ×10 ³)
for 1.

Scheme S1 The isodesmic reactions of the 1,3-dialkylimidazolium cations.

Scheme S2 Born-Haber cycle for the formation of ionic liquids.

where a, b, c, d are the numbers of moles of the respective products

Scheme S3 Combustion equations and thermochemical equations of Hess's Law for the ionic liquids 1–5.

$$1: C_6H_{10}N_8O_2(s) + 15/2O_2(g) \to 6CO_2(g) + 5H_2O(I) + 4N_2(g)$$
[I]

$$\Delta_{\rm f} H^{\rm o}_{298} \,(\mathbf{1},\,{\rm s}) = 6 \Delta_{\rm f} H^{\rm o}_{298} \,({\rm CO}_2,\,{\rm g}) + 5 \Delta_{\rm f} H^{\rm o}_{298} \,({\rm H}_2{\rm O},\,{\rm I}) - \Delta_{\rm c} H^{\rm o}_{298} \,(\mathbf{1},\,{\rm s}) \tag{4}$$

2:
$$C_7H_{12}N_8O_2(I) + 9O_2(g) \rightarrow 7CO_2(g) + 6H_2O(I) + 4N_2(g)$$
 [II]

$$\Delta_{\rm f} H^{\rm o}_{298} \left(\mathbf{2}, \, \mathsf{I} \right) = 7 \Delta_{\rm f} H^{\rm o}_{298} \left({\rm CO}_2, \, \mathsf{g} \right) + 6 \Delta_{\rm f} H^{\rm o}_{298} \left({\rm H}_2 {\rm O}, \, \mathsf{I} \right) - \Delta_{\rm c} H^{\rm o}_{298} \left(\mathbf{2}, \mathsf{I} \right) \tag{5}$$

3:
$$C_9H_{16}N_8O_2(I) + 12O_2(g) \rightarrow 9CO_2(g) + 8H_2O(I) + 4N_2(g)$$
 [III]

$$\Delta_{\rm f} H^{\rm o}_{298} \left(\mathbf{3}, \, \mathsf{I} \right) = 9 \Delta_{\rm f} H^{\rm o}_{298} \left({\rm CO}_2, \, \mathsf{g} \right) + 8 \Delta_{\rm f} H^{\rm o}_{298} \left({\rm H}_2 {\rm O}, \, \mathsf{I} \right) - \Delta_{\rm c} H^{\rm o}_{298} \left(\mathbf{3}, \, \mathsf{I} \right) \tag{6}$$

$$\textbf{4:} \ C_{11}H_{20}N_8O_2(I) + 15O_2(g) \rightarrow 11CO_2(g) + 10H_2O(I) + 4N_2(g) \tag{IV}$$

$$\Delta_{\rm f} H^{\rm o}_{298} \left({\bf 4}, \, {\rm I} \right) = 11 \Delta_{\rm f} H^{\rm o}_{298} \left({\rm CO}_2, \, {\rm g} \right) + 10 \Delta_{\rm f} H^{\rm o}_{298} \left({\rm H}_2 {\rm O}, \, {\rm I} \right) - \Delta_{\rm c} H^{\rm o}_{298} \left({\bf 4}, \, {\rm I} \right) \tag{7}$$

5:
$$C_{13}H_{24}N_8O_2(I) + 18O_2(g) \rightarrow 13CO_2(g) + 12H_2O(I) + 4N_2(g)$$
 [V]

$$\Delta_{\rm f} H^{\rm o}_{298} \left({\bf 5}, \, {\rm I} \right) = 13 \Delta_{\rm f} H^{\rm o}_{298} \left({\rm CO}_2, \, {\rm g} \right) + 12 \Delta_{\rm f} H^{\rm o}_{298} \left({\rm H}_2 {\rm O}, \, {\rm I} \right) - \Delta_{\rm c} H^{\rm o}_{298} \left({\bf 5}, \, {\rm I} \right) \tag{8}$$