Electronic Supplementary Material (ESI) for RSC Advances.
This journal is © The Royal Society of Chemistry 2015

SUPPORTING INFORMATION

Fig. S1: Structural evolution from GaTe to GaTe_{4}.

Fig. S2: Schematic diagram of the sequential addition of tellurium atom to $\mathrm{Ga}_{2} \mathrm{Te}_{n}(n=1-4)$.

Fig. S3: Orbital accommodating the excess electron of anionic monogallium tellurides.

Fig. S4: Orbital accommodating the excess electron of anionic digallium tellurides.

Fig. S5: Electron affinities of gallium chalcogenide $\left(\mathrm{Ga}_{m} \mathrm{X}_{n}\right.$ where $\mathrm{X}=\mathrm{O}-\mathrm{Te} ; m=1,2$ and $n=1-4$) [Ref: 12-17,19-21,22] clusters with the B3LYP functional.

Table S1: Internal coordinates of the ground state geometries, harmonic vibrational wavenumbers (cm^{-1}), and energies (Hartree) at the B3P86 functional for $\mathrm{GaTe}_{n}(n=1-4)$ [Basis sets Ga: $6-311+\mathrm{G}(2 \mathrm{df})$ and Te: LANL2DZdp].

		$\begin{array}{lc}\text { Neutral } & \text { GaTe }_{n} \\ \text { Anion }\end{array}$		Cation
$n=1$	$\mathrm{v} / \mathrm{cm}^{-1}$	Ga,0.,0.,-1.2595839389	Ga,0.,0.,-1.2994377662	Ga,0.,0.,-1.3813576298
		Te, 0.,0.,1.1453449389	Te, 0.,0.,1.1851987662	Te, 0.,0., 1.2671186298
		$257\left(\sigma_{\mathrm{g}}\right)$	$251\left(\sigma_{\mathrm{g}}\right)$	149 (σ_{g})
		$E=-1933.762411$	$E=-1933.879888$	$\boldsymbol{E}=-1933.438318$
$n=2$	$\mathrm{v} / \mathrm{cm}^{-1}$	$\mathrm{Ga}, 0.0196844214,0.0087703118,0$.	Ga, $0 ., 0.0$.	Ga,1.9938714296,-1.0281499257,0.
		Te, 2.8581570318,-0.1835472564,0.	Te,2.3958344846,0.,0.	Te,-1.9299871135,0.3220848359,0.
		Te, 1.7748812491,2.2477872619,0.	Te,-2.3958344846,0., 0 .	Te,0.1102446838,1.2666777616,0.
		$227\left(\mathrm{a}_{1}\right), 168\left(\mathrm{a}_{1}\right), 103\left(\mathrm{~b}_{2}\right)$	$362\left(\sigma_{u}\right), 168\left(\sigma_{\mathrm{g}}\right), 81\left(\pi_{\mathrm{u}}\right), 81\left(\pi_{\mathrm{u}}\right)$	$245\left(\mathrm{a}_{1}\right), 116\left(\mathrm{a}_{1}\right), 22\left(\mathrm{a}_{1}\right)$
		$\boldsymbol{E}=\mathbf{- 1 9 4 2 . 0 1 4 0 5 1 1}$	$\boldsymbol{E}=\mathbf{- 1 9 4 2 . 1 5 4 8 5}$	$\boldsymbol{E}=\mathbf{- 1 9 4 1 . 7 0 6 6 6 3}$
$n=3$	$\mathrm{v} / \mathrm{cm}^{-1}$	Ga,-0.5703826342,-0.0889610235,0.	Ga,-0.1412926588,0.,-0.1381950146	$\mathrm{Ga}, 0 ., 0 ., 0.53804178$
		Te,-2.8936172372,-0.4855113343, 0 .	Te,0.4140581793,0.,2.3962119782	Te, 0.,0.,2.97550578
		Te,1.4613495696,1.6325820535,0.	Te,2.4048004821,0.,0.3608471441	Te, 0.,1.36168314,-1.64812498
		Te, 1.9191258619,-1.0314665456,0.	Te,-1.8628317854,0.,-1.8219918003	Te,0.,-1.36168314,-1.64812498
		324 (a^{\prime}), 219 ($\left.\mathrm{a}^{\prime}\right), 126$ ($\left.\mathrm{a}^{\prime}\right), 84\left(\mathrm{a}^{\prime}\right), 72$ (a'),	$330\left(a_{1}\right), 185\left(a_{1}\right), 144\left(b_{2}\right), 127\left(a_{1}\right)$,	$327\left(a_{1}\right), 209\left(a_{1}\right), 147\left(b_{2}\right), 130\left(a_{1}\right)$,
		47 (a')	$82\left(\mathrm{~b}_{1}\right), 60\left(\mathrm{~b}_{2}\right)$	$67\left(\mathrm{~b}_{1}\right), 40\left(\mathrm{~b}_{2}\right)$
		$E=-1950.231676$	$E=-1950.37661$	$E=-1949.943481$
$n=4$		Ga,0.,0.,0.9039406391	Ga,0.,0.,0.9618547991	Ga, $0 ., 0 ., 0$.
		Te, 0.,1.9725938675,0.7578249608	Te, $0 ., 1.9652275408,-0.7664876197$	Te, 0.,1.3621366077,2.2010573856
		Te, 0., $0 .,-2.6580566915$	Te, 0., $0 .,-2.7330345758$	Te, 0.,-1.3621366077,2.2010573856
		Te,0.,-1.9725938675,-0.7578249608	Te, $0 .,-1.9652275408,0.7664876197$	Te, 1.3621366077,0.,-2.2010573856
		Te,0.,0.,3.341575874	Te,0.,0.,3.3759649162	Te,-1.3621366077,0.,-2.2010573856

$\mathbf{v} / \mathbf{c m}^{\mathbf{- 1}} 263\left(\mathrm{a}_{1}\right), 215\left(\mathrm{~b}_{2}\right), 187\left(\mathrm{~b}_{2}\right), 183\left(\mathrm{a}_{1}\right), 306\left(\mathrm{a}_{1}\right), 195\left(\mathrm{~b}_{2}\right), 184\left(\mathrm{a}_{1}\right), 178\left(\mathrm{~b}_{2}\right), 319\left(\mathrm{~b}_{2}\right), 217\left(\mathrm{a}_{1}\right), 201\left(\mathrm{~b}_{2}\right), 143(e)$, $143\left(a_{1}\right), 89\left(a_{1}\right), 71\left(b_{1}\right), 40\left(b_{2}\right), 32\left(b_{1}\right) \quad 137\left(a_{1}\right), 86\left(a_{1}\right), 79\left(b_{1}\right), 46\left(b_{2}\right), 25143(e), 109\left(a_{1}\right), 51$ (e), 51 (e), 36 (b_{1}) (b_{1})
$E=-1958.471755$ $E=-1958.611833$ $E=-1958.190907$

Table S2: Internal coordinates of the ground state geometries, harmonic vibrational wavenumbers (cm^{-1}), and energies (Hartree) at the B3P86 functional for $\mathrm{Ga}_{2} \mathrm{Te}_{n}(n=1-4)$ [Basis sets $\mathrm{Ga}: 6-311+\mathrm{G}(2 \mathrm{df})$ and Te: LANL2DZdp].

		Neutral	$\mathbf{G a}_{2} \mathbf{T e}_{n}$ Anion	Cation
$n=1$	$\mathrm{v} / \mathrm{cm}^{-1}$	Te,-0.0899180282,-0.1379848132,0. Ga,2.5309072261,0.0293016862,0. Ga,-0.9953104577,2.3271671771,0. $204\left(b_{2}\right), 195\left(a_{1}\right), 37\left(a_{1}\right)$ $\boldsymbol{E}=\mathbf{- 3 8 5 9 . 3 8 1 8 8 3}$	$\begin{aligned} & \mathrm{Te},-0.1648464147,-0.122581138,0 . \\ & \mathrm{Ga}, 2.5125864398,0.1155020146,0 . \\ & \mathrm{Ga}, 0.8339080402,2.3729788826,0 . \\ & 205\left(\mathrm{a}_{1}\right), 141\left(\mathrm{~b}_{2}\right), 104\left(\mathrm{a}_{1}\right) \\ & \boldsymbol{E}=-\mathbf{3 8 5 9 . 4 5 2 6 1 5} \end{aligned}$	$\begin{aligned} & \hline \text { Te,-0.0717970208,-0.1575930904,0. } \\ & \mathrm{Ga}, 2.8422288477,0.046545608,0 . \\ & \mathrm{Ga},-0.9614679469,2.1878048425,0 . \\ & 159\left(\mathrm{a}_{1}\right), 123\left(\mathrm{a}_{1}\right), 39\left(\mathrm{a}_{1}\right) \\ & \boldsymbol{E}=-3859.079897 \end{aligned}$
$n=2$	$\mathrm{v} / \mathrm{cm}^{-1}$	$\begin{aligned} & \mathrm{Ga}, 0 ., 2.0201678167,0.7525642224 \\ & \mathrm{Te},-1.3872637169,0 .,-0.6930192224 \\ & \mathrm{Te}, 1.3872637169,0 .,-0.6930192224 \\ & \mathrm{Ga}, 0 .,-2.0201678167,0.7525642224 \\ & 205\left(\mathrm{a}_{1}\right), 170 \quad\left(\mathrm{~b}_{2}\right), 155 \quad\left(\mathrm{a}_{1}\right), 118 \quad\left(\mathrm{~b}_{1}\right), \\ & 87\left(\mathrm{a}_{2}\right), 49\left(\mathrm{a}_{1}\right) \\ & \boldsymbol{E}=-\mathbf{3 8 6 7 . 6 2 5 7 9 7} \end{aligned}$	$\begin{aligned} & \mathrm{Ga}, 0 ., 0 .,-1.6598399969 \\ & \mathrm{Te}, 0 ., 2.100675463,0 . \\ & \mathrm{Te}, 0 .,-2.100675463,0 . \\ & \mathrm{Ga}, 0 ., 0 ., 1.6598399969 \\ & 194\left(\mathrm{~b}_{1 \mathrm{u}}\right), 176\left(\mathrm{a}_{\mathrm{g}}\right), 150\left(\mathrm{~b}_{3 \mathrm{~g}}\right), 92\left(\mathrm{a}_{\mathrm{g}}\right), \\ & 47\left(\mathrm{~b}_{2 \mathrm{u}}\right), 39\left(\mathrm{~b}_{3 \mathrm{u}}\right) \\ & \boldsymbol{E}=-\mathbf{3 8 6 7 . 7 3 4 1 3 2} \end{aligned}$	$\begin{aligned} & \mathrm{Ga}, 0.1481846634,-0.1771972945,0 . \\ & \mathrm{Te}, 6.1850375779,-0.1824673134,0 . \\ & \mathrm{Te}, 1.929502661,2.1265990662,0 . \\ & \mathrm{Ga}, 4.0249634277,0.9540814717,0 . \\ & 336 \quad\left(\mathrm{a}^{\prime}\right), 157 \quad \text { (a'), } 134 \quad \text { (a'), } 76 \quad\left(\mathrm{a}^{\prime}\right), \\ & \left.60 \text { (a) } \mathrm{a}^{\prime}\right), 24\left(\mathrm{a}^{\prime}\right) \\ & \boldsymbol{E}=-3867.323724 \end{aligned}$
$n=3$	$\mathrm{v} / \mathrm{cm}^{-1}$	Te, $0.0430490165,0 ., 0.0491485273$ Ga,-0.0544892855,0.,2.5613484797 Ga,2.546203716,0.,0.2834109273 Te,-0.2012191029,0.,4.8834988783 Te,4.8674455702,0.,0.4438739041 $372\left(a_{1}\right), 361\left(b_{2}\right), 162\left(a_{1}\right), 151\left(b_{2}\right)$, $84\left(a_{1}\right), 68\left(b_{1}\right), 62\left(a_{2}\right), 55\left(b_{2}\right), 14\left(a_{1}\right)$ $E=-3875.852304$	Ga,0.0000000002,0.,-0.1418949722 Ga,0.0000000002,0.,3.0239620179 Te,2.0790915951,0.,1.3945525318 Te,-2.0790915947,0.,1.3945525318 Te,0.0000000002,0.,5.4490507456 $293\left(a_{1}\right), 235\left(b_{2}\right), 190\left(a_{1}\right), 158\left(b_{2}\right)$, $131\left(a_{1}\right), 91\left(b_{1}\right), 81\left(a_{1}\right), 43\left(b_{2}\right), 32$ (b_{1}) $E=-3875.988792$	Ga,0.,0.,0.1600858976 Ga,0.,0.,2.9025740244 Te,2.1510641313,0.,1.3440684857 Te,-2.1510641313,0.,1.3440684857 Te,0.,0.,5.3694259636 $310\left(b_{2}\right), 295\left(a_{1}\right), 209\left(a_{1}\right), 166\left(b_{2}\right)$, $123\left(a_{1}\right), 109\left(a_{1}\right), 84\left(b_{1}\right), 50\left(b_{1}\right)$, $38\left(\mathrm{~b}_{2}\right)$ $E=-3875.570983$

$\boldsymbol{n}=\mathbf{4} \quad \mathrm{Ga},-1.5370608861,0 ., 0$.
Ga,1.5370608861,0.,0.
Te,0.,2.0461473089,0.
Te,0.,-2.0461473089,0.
Те,-4.0376555072,0.,0.
Te,4.0376555072,0.,0.

Ga,0.,0.,1.6018796304
Ga,0.,0.,-1.6018796304
Te,0.,2.0228529281,0.
Te,0.,-2.0228529281,0.
Te,0.,0.,4.0613319528
Te,0.,0.,-4.0613319528
$\mathrm{Ga}, 0.0144054548,-0.0145097848$, -0.0100877513
Te,2.70412703,0.0837678464,
0.0582385709

Te,-1.3980875036,2.1832731911, -0.1357697328
Ga,1.7519751144,-1.7646637859, -1.2268610431
Te,-0.6450035956,-2.1578044714,
-1.500187319
Te,-1.3980874987, $0.6331531008,2.0938558721$
$317\left(b_{2}\right), 282\left(a_{1}\right), 216\left(a_{1}\right), 198\left(a_{1}\right)$, $155\left(a_{1}\right), 138\left(b_{1}\right), 120\left(a_{1}\right), 92\left(a_{1}\right)$,
$68\left(\mathrm{~b}_{1}\right), 43\left(\mathrm{~b}_{2}\right), 41\left(\mathrm{~b}_{1}\right), 35\left(\mathrm{a}_{2}\right)$
E $=-3883.816615$

Table S3: Internal coordinates of the ground state geometries, harmonic vibrational wavenumbers (cm^{-1}), and energies (Hartree) at the B3PW91 functional for $\mathrm{GaTe}_{n}(n=1-4)$ [Basis sets $\mathrm{Ga}: 6-311+\mathrm{G}(2 \mathrm{df})$ and Te: LANL2DZdp].

		Neutral $\begin{array}{cc}\text { GaTe }_{n} \\ \text { Anion }\end{array}$		Cation
$n=1$	$\mathrm{v} / \mathrm{cm}^{-1}$	Ga,0.,0.,-1.2612328796	Ga,0.,0.,-1.302035904	Ga,0.,0.,-1.3845514819
		Te, 0.,0.,1.1469938796	Te,0.,0.,1.187796904	Te, 0.,0., 1.2703124819
		$257\left(\sigma_{\mathrm{g}}\right)$	$250\left(\sigma_{\mathrm{g}}\right)$	147 (σ_{g})
		$E=-1932.923074$	$E=-1933.02045$	$E=-1932.620031$
$n=2$	$\mathrm{v} / \mathrm{cm}^{-1}$	Ga, 0.0157619826, $0.0070226778,0$.	Ga, $0 ., 0.0$.	$\mathrm{Ga}, 2.0203758826,-1.0285085396,0$.
		Te,2.8604717989,-0.183466952,0.	Te,2.4004966503,0., 0 .	Te,-1.9527134144,-0.3109684262,0.
		Te, 1.7764889207,2.2494545916,0.	Te,-2.4004966503,0., 0 .	Te,0.1064665319,1.2559199658,0.
		$227\left(\mathrm{a}_{1}\right), 168\left(\mathrm{a}_{1}\right), 103\left(\mathrm{~b}_{2}\right)$	$360\left(\sigma_{u}\right), 167\left(\sigma_{\mathrm{g}}\right), 81\left(\tau_{\mathrm{u}}\right), 81\left(\tau_{\mathrm{u}}\right)$	$245\left(\mathrm{a}_{1}\right), 114\left(\mathrm{a}_{1}\right), 22\left(\mathrm{a}_{1}\right)$
		$\boldsymbol{E}=\mathbf{- 1 9 4 1 . 0 6 1 7 8 0 2}$	$\boldsymbol{E}=\mathbf{- 1 9 4 1 . 1 8 2 6 6 6}$	$\boldsymbol{E}=\mathbf{- 1 9 4 0 . 7 7 5 1 9 3}$
$n=3$	v / cm^{-1}	$\mathrm{Ga}, 0,-0.5722543721,-0.0887133288,0$.	Ga, 0,-0.1424849099,0.,-0.1393611272	Ga, $0,0 ., 0 .,-0.5387115679$
		Te, $0,-2.8998354976,-0.4845375999,0$.	Te, $, 0.4164553095,0 ., 2.3993693864$	Te, 0, 0., $0 .,-2.9814906072$
		Te, 0, 1.4659119818,1.6329244108,0.	Te, $0,2.4080102444,0 ., 0.363173705$	Te,0,0.,1.3622119398,1.6512349076
		Te, 0, 1.922653448,-1.033030332,0.	$\mathrm{Te}, 0,-1.8672464268,0 .,-1.8263096568$	Te,0,0.,-1.3622119398,1.6512349076
		340 (a^{\prime}), 219 ($\left.\mathrm{a}^{\prime}\right), 126$ ($\left.\mathrm{a}^{\prime}\right), 84\left(\mathrm{a}^{\prime \prime}\right), 72$ ($\left.\mathrm{a}^{\prime}\right)$,	$329\left(a_{1}\right), 185\left(a_{1}\right), 143\left(b_{2}\right), 126\left(a_{1}\right)$,	$326\left(a_{1}\right), 210\left(a_{1}\right), 146\left(b_{2}\right), 130\left(a_{1}\right)$,
		47 (a')	$82\left(\mathrm{~b}_{1}\right), 60\left(\mathrm{~b}_{2}\right)$	$66\left(\mathrm{~b}_{1}\right), 40\left(\mathrm{~b}_{2}\right)$
		$E=-1949.166763$	$E=-1949.291842$	$E=-1948.898948$
$n=4$		Ga,0.,0.,0.9035962431	Ga,0.,0.,0.9634209388	Ga, $0 ., 0 ., 0$.
		Te,0.,1.9759128156,-0.7599022274	Te, $0 ., 1.9684966417,-0.7695837605$	Te,0.,1.3628261869,2.2059428792
		Te,0.,0.,-2.6597336602	Te, 0., $0 .,-2.7345659914$	Te, 0.,-1.3628261869,2.2059428792
		Te,0.,-1.9759128156,-0.7599022274	Te,0.,-1.9684966417,-0.7695837605	Te, 1.3628261869,0.,-2.2059428792
		Te, 0.,0.,3.3477517718	Te,0.,0.,3.3821224737	Te,-1.3628261869,0.,-2.2059428792

$\mathbf{v} / \mathbf{c m}^{\mathbf{- 1}} 260\left(\mathrm{a}_{1}\right), 215\left(\mathrm{~b}_{2}\right), 188\left(\mathrm{~b}_{2}\right), 182\left(\mathrm{a}_{1}\right), 304\left(\mathrm{a}_{1}\right), 194\left(\mathrm{~b}_{2}\right), 184\left(\mathrm{a}_{1}\right), 178\left(\mathrm{~b}_{2}\right), 318\left(\mathrm{~b}_{2}\right), 217\left(\mathrm{a}_{1}\right), 200\left(\mathrm{~b}_{2}\right), 142(e)$, $142\left(a_{1}\right), 89\left(a_{1}\right), 71\left(b_{1}\right), 40\left(b_{2}\right), 32\left(b_{1}\right) \quad 136\left(a_{1}\right), 85\left(a_{1}\right), 79\left(b_{1}\right), 46\left(b_{2}\right), 25142(e), 109\left(a_{1}\right), 51$ (e), 51 (e), 36 $E=-1957.293459$ (b_{1}) (b_{1}) $E=-1957.413757$ $E=-1957.033446$

Table S4: Internal coordinates of the ground state geometries, harmonic vibrational wavenumbers (cm^{-1}), and energies (Hartree) at the B3PW91 functional for $\mathrm{Ga}_{2} \mathrm{Te}_{n}(n=1-4)$ [Basis sets Ga: 6-311+G(2df) and Te: LANL2DZdp].

		Neutral	$\mathbf{G a}_{2} \mathbf{T e}_{n}$ Anion	Cation
$n=1$	$\mathrm{v} / \mathrm{cm}^{-1}$	$\begin{aligned} & \mathrm{Ga}, 0.0157619826,0.0070226778,0 . \\ & \mathrm{Te}, 2.8604717989,0.183466952,0 . \\ & \mathrm{Te}, 1.7764889207,2.2494545916,0 . \\ & 202\left(\mathrm{~b}_{2}\right), 194\left(\mathrm{a}_{1}\right), 37\left(\mathrm{a}_{1}\right) \\ & \boldsymbol{E}=-\mathbf{3 8 5 7 . 8 1 3 6 8 8} \end{aligned}$	$\begin{aligned} & \text { Ga,0.,0.,0. } \\ & \mathrm{Te}, 2.4004966503,0 ., 0 . \\ & \mathrm{Te},-2.4004966503,0 ., 0 . \\ & 203\left(\mathrm{a}_{1}\right), 140\left(\mathrm{~b}_{2}\right), 103\left(\mathrm{a}_{1}\right) \\ & \boldsymbol{E}=\mathbf{- 3 8 5 7 . 8 6 4 8 1 5} \end{aligned}$	$\begin{aligned} & \mathrm{Ga}, 2.0203758826,-1.0285085396,0 . \\ & \mathrm{Te},-1.9527134144,-0.3109684262,0 . \\ & \mathrm{Te}, 0.1064665319,1.2559199658,0 . \\ & 159\left(\mathrm{a}_{1}\right), 127\left(\mathrm{a}_{1}\right), 39\left(\mathrm{a}_{1}\right) \\ & \boldsymbol{E}=-\mathbf{3 8 5 7 . 5 3 2 5 8 2} \end{aligned}$
$n=2$	$\mathrm{v} / \mathrm{cm}^{-1}$	$\begin{aligned} & \mathrm{Ga}, 0 ., 2.0234047861,0.7557533179 \\ & \mathrm{Te},-1.3882895013,0 .,-0.6962083179 \\ & \mathrm{Te}, 1.3882895013,0 .,-0.6962083179 \\ & \mathrm{Ga}, 0 .,-2.0234047861,0.7557533179 \\ & 205\left(\mathrm{a}_{1}\right), 170 \quad\left(\mathrm{~b}_{2}\right), 155 \quad\left(\mathrm{a}_{1}\right), 118 \quad\left(\mathrm{~b}_{1}\right), \\ & 87\left(\mathrm{a}_{2}\right), 49\left(\mathrm{a}_{1}\right) \\ & \boldsymbol{E}=-3865.944712 \end{aligned}$	$\begin{aligned} & \mathrm{Ga}, 0 ., 0 .,-1.6629136436 \\ & \mathrm{Te}, 0 ., 2.1050849619,0 . \\ & \mathrm{Te}, 0 .,-2.1050849619,0 . \\ & \mathrm{Ga}, 0 ., 0 ., 1.6629136436 \\ & 193\left(\mathrm{~b}_{1 \mathrm{u}}\right), 178\left(\mathrm{a}_{\mathrm{g}}\right), 149\left(\mathrm{~b}_{3 \mathrm{~g}}\right), 92\left(\mathrm{a}_{\mathrm{g}}\right), \\ & 40\left(\mathrm{~b}_{2 \mathrm{u}}\right), 40\left(\mathrm{~b}_{3 \mathrm{u}}\right) \\ & \boldsymbol{E}=-\mathbf{3 8 6 6 . 0 3 3 0 3 7} \end{aligned}$	Ga,0.1355335239,-0.1779061694,0. Te,6.1956609906,-0.1825957521,0. Te,1.9285989788,2.1275351909,0. Ga,4.0278948367,0.9539826606,0. 342 ($\left.a^{\prime}\right), 158$ ($\left.a^{\prime}\right), 126\left(a^{\prime}\right), 73\left(a^{\prime}\right), 64$ ($\mathrm{a}^{\prime \prime}$), 28 (a^{\prime}) $E=-3865.663509$
$n=3$	$\mathrm{v} / \mathrm{cm}^{-1}$	Te, 0.0459928506,0.,0.0525094661 Ga,-0.0600717752,0.,2.5698512671 Ga,2.5553678212,0.,0.2789972258 Te,-0.2219904599,0.,4.8951096133 Te,4.8816914777,0.,0.4248131444 $370\left(a_{1}\right), 360\left(b_{2}\right), 161\left(a_{1}\right), 151\left(b_{2}\right)$, $84\left(a_{1}\right), 68\left(b_{1}\right), 62\left(a_{2}\right), 55\left(b_{2}\right), 14\left(a_{1}\right)$ $E=-3874.058469$	$\mathrm{Ga}, 0.0000000002,0 .,-0.1445644472$ Ga,0.0000000002,0.,3.0258167605 Te,2.08315598,0.,1.391798191 Te,-2.0831559797,0.,1.391798191 $\mathrm{Te}, 0.0000000002,0 ., 5.4553741846$ $292\left(a_{1}\right), 234\left(b_{2}\right), 190\left(a_{1}\right), 157\left(b_{2}\right)$, $130\left(a_{1}\right), 91\left(b_{1}\right), 81\left(a_{1}\right), 44\left(b_{2}\right)$, $32\left(\mathrm{a}_{1}\right)$ $E=-3874.175275$	Ga,0.,0.,0.1565191042 Ga,0.,0.,2.9042381996 Te,2.1546952717,0.,1.3413701381 Te,-2.1546952717,0.,1.3413701381 Te,0.,0.,5.3767252843 $309\left(b_{2}\right), 294\left(a_{1}\right), 209\left(a_{1}\right), 165\left(b_{2}\right)$, $123\left(a_{1}\right), 108\left(a_{1}\right), 84\left(b_{1}\right), 49\left(b_{1}\right)$, $38\left(b_{2}\right)$ $E=-3873.797546$

$\boldsymbol{n}=\mathbf{4} \quad \mathrm{Ga},-1.5375504669,0 ., 0$.
Ga,1.5375504669,0.,0.
Te,0.,2.0511740011,0.
Te,0.,-2.0511740011,0.
Те,-4.0446988693,0.,0.
Te,4.0446988693,0.,0.

Ga,0.,0.,1.6034629475
Ga,0.,0.,-1.6034629475
Te,0.,2.0275162757,0.
Те,0.,-2.0275162757,0.
Te,0.,0.,4.0683324907
Те,0.,0.,-4.0683324907
$\mathrm{Ga}, 0.014167858,-0.0142704672$, -0.0099213686
Te,2.7093840324,0.0834449452, 0.0580140778

Te,-1.401584011,2.187180148, -0.1338751711
Ga,1.7547464538,-1.7674551968, -1.2288017376
Te,-0.6456780572,-2.1620973, -1.5031718559
Te,-1.4015840062,0.6362898057, 2.0968583307
$\mathbf{v} / \mathbf{c m}^{-1} 277\left(\mathrm{a}_{\mathrm{g}}\right), 239\left(\mathrm{~b}_{2 \mathrm{u}}\right), 236\left(\mathrm{~b}_{1 \mathrm{u}}\right), 199\left(\mathrm{~b}_{3 \mathrm{~g}}\right), 295\left(\mathrm{a}_{\mathrm{g}}\right), 237\left(\mathrm{~b}_{2 \mathrm{u}}\right), 233\left(\mathrm{~b}_{1 \mathrm{u}}\right), 187\left(\mathrm{~b}_{3 \mathrm{~g}}\right), 316\left(\mathrm{~b}_{2}\right), 282\left(\mathrm{a}_{1}\right), 216\left(\mathrm{a}_{1}\right), 198\left(\mathrm{a}_{1}\right)$, $158\left(\mathrm{a}_{\mathrm{g}}\right), 126\left(\mathrm{~b}_{1 \mathrm{u}}\right), 94\left(\mathrm{~b}_{3 \mathrm{u}}\right), 78\left(\mathrm{a}_{\mathrm{g}}\right), 156\left(\mathrm{a}_{\mathrm{g}}\right), 123\left(\mathrm{~b}_{1 \mathrm{u}}\right), 97\left(\mathrm{~b}_{3 \mathrm{u}}\right), 85\left(\mathrm{~b}_{2 \mathrm{~g}}\right), 154\left(\mathrm{~b}_{2}\right), 137\left(\mathrm{~b}_{1}\right), 120\left(\mathrm{a}_{1}\right), 92\left(\mathrm{a}_{1}\right)$, $69\left(\mathrm{~b}_{2 \mathrm{~g}}\right), 48\left(\mathrm{~b}_{3 \mathrm{~g}}\right), 23\left(\mathrm{~b}_{2 \mathrm{u}}\right), 19\left(\mathrm{~b}_{3 \mathrm{u}}\right) \quad 77\left(\mathrm{a}_{\mathrm{g}}\right), 51\left(\mathrm{~b}_{3 \mathrm{~g}}\right), 31\left(\mathrm{~b}_{2 \mathrm{u}}\right), 16\left(\mathrm{~b}_{3 \mathrm{u}}\right) \quad 68\left(\mathrm{~b}_{1}\right), 43\left(\mathrm{~b}_{2}\right), 41\left(\mathrm{~b}_{1}\right), 35\left(\mathrm{a}_{2}\right)$ $\boldsymbol{E}=-3882.187574 \quad E=-3882.316546 \quad E=-3881.93023$

Table S5: Internal coordinates of the ground state geometries, harmonic vibrational wavenumbers (cm^{-1}), and energies (Hartree) at the B3LYP functional for $\mathrm{GaTe}_{n}(n=1-4)$ [Basis sets Ga : $6-311+\mathrm{G}(2 \mathrm{df})$ and Te: LANL2DZdp].

$n=4$		Ga, 0,0.,0.,0.9172107419	Ga,0,0., 0.0 .9766748764	Ga, $0,0.0 .0 .0$.
		Te, 0,0.,1.9858667992,-0.7669890476	Te, 0,0., 1.9818553213,-0.7761903516	Te,0,0.,1.3722590855,2.222151623
		Te,0,0., $0 .,-2.6854436915$	Te,0,0., $0 .,-2.7603587707$	Te,0,0.,-1.3722590855,2.222151623
		Te, $0,0 .,-1.9858667992,-0.7669890476$	Te,0,0.,-1.9818553213,-0.7761903516	$\mathrm{Te}, 0,1.3722590855,0 .,-2.222151623$
		Te, 0,0., $0 ., 3.3740209447$	Te, $0,0 ., 0 ., 3.4078744975$	$\mathrm{Te}, 0,-1.3722590855,0 .,-2.222151623$
	$\mathrm{v} / \mathrm{cm}^{-1}$	$\begin{aligned} & 252\left(a_{1}\right), 205\left(b_{2}\right), 179\left(b_{2}\right), 175\left(a_{1}\right), \\ & 137\left(a_{1}\right), 89\left(a_{1}\right), 70\left(b_{1}\right), 40\left(b_{2}\right), 31\left(b_{1}\right) \end{aligned}$	$295\left(a_{1}\right), 184\left(b_{2}\right), 175\left(a_{1}\right), 170\left(b_{2}\right)$, $131\left(a_{1}\right), 85\left(a_{1}\right), 78\left(b_{1}\right), 46\left(b_{2}\right), 24$ (b_{1})	$\begin{aligned} & 306\left(b_{2}\right), 208\left(a_{1}\right), 193\left(b_{2}\right), 133(e), \\ & 133(e), 105\left(a_{1}\right), 51(e), 51(e), 35 \\ & \left(b_{1}\right) \end{aligned}$
		$E=-1957.22703$	$E=-1957.34623$	$E=-1956.964773$

Table S6: Internal coordinates of the ground state geometries, harmonic vibrational wavenumbers (cm^{-1}), and energies (Hartree) at the B3LYP functional for $\mathrm{Ga}_{2} \mathrm{Te}_{n}(n=1-4)$ [Basis sets Ga : $6-311+\mathrm{G}(2 \mathrm{df})$ and Te: LANL2DZdp].

	Neutral $\begin{array}{r}\mathbf{G a}_{2} \mathbf{\mathbf { T e } _ { \boldsymbol { n } }} \\ \text { Anion }\end{array}$			Cation
$n=1$	$\mathrm{v} / \mathrm{cm}^{-1}$	$\begin{aligned} & \mathrm{Te}, 0,-0.0855373005,-0.1312623137,0 . \\ & \mathrm{Ga}, 0,2.5609213319,0.0049543413,0 . \\ & \mathrm{Ga}, 0,-1.0297052913,2.3447920224,0 . \\ & 196\left(\mathrm{~b}_{2}\right), 187\left(\mathrm{a}_{1}\right), 37\left(\mathrm{a}_{1}\right) \\ & \boldsymbol{E}=-\mathbf{3 8 5 7 . 8 6 6 1 5 7} \end{aligned}$	$\begin{aligned} & \mathrm{Te}, 0,-0.1705117925,-0.1267939596,0 . \\ & \mathrm{Ga}, 0,2.5374240494,0.088016337,0 . \\ & \mathrm{Ga}, 0,0.8147358084,2.4046773817,0 . \\ & 194\left(\mathrm{a}_{1}\right), 133\left(\mathrm{~b}_{2}\right), 91\left(\mathrm{a}_{1}\right) \\ & \boldsymbol{E}=-\mathbf{3 8 5 7 . 9 1 1 9 5 5} \end{aligned}$	$\begin{aligned} & \mathrm{Te}, 0,-0.0463084024,-0.1321450033,0 . \\ & \mathrm{Ga}, 0,2.9171255201,-0.0172310404,0 . \\ & \mathrm{Ga}, 0,-1.0618532378,2.2261334037,0 . \\ & 159\left(\mathrm{a}_{1}\right), 123\left(\mathrm{a}_{1}\right), 30\left(\mathrm{a}_{1}\right) \\ & \boldsymbol{E}=-\mathbf{3 8 5 7 . 5 8 6 1 9 1} \end{aligned}$
$n=2$	$\mathrm{v} / \mathrm{cm}^{-1}$	$\begin{aligned} & \mathrm{Ga}, 0,0 ., 2.0584358799,0.7585660949 \\ & \mathrm{Te}, 0,-1.3992351736,0 .,-0.6990210949 \\ & \mathrm{Te}, 0,1.3992351736,0 .,-0.6990210949 \\ & \mathrm{Ga}, 0,0 .,-2.0584358799,0.7585660949 \\ & 195\left(\mathrm{a}_{1}\right), 162\left(\mathrm{~b}_{2}\right), 148 \quad\left(\mathrm{a}_{1}\right), 109 \quad\left(\mathrm{~b}_{1}\right), \\ & 77\left(\mathrm{a}_{2}\right), 48\left(\mathrm{a}_{1}\right) \\ & \boldsymbol{E}=-3865.966584 \end{aligned}$	$\begin{aligned} & \mathrm{Ga}, 0,0 ., 0 .,-1.6875503794 \\ & \mathrm{Te}, 0,0 ., 2.1264916151,0 . \\ & \mathrm{Te}, 0,0 .,-2.1264916151,0 . \\ & \mathrm{Ga}, 0,0 ., 0 ., 1.6875503794 \\ & 179\left(\mathrm{~b}_{\mathrm{uu}}\right), 170\left(\mathrm{a}_{\mathrm{g}}\right), 136\left(\mathrm{~b}_{3 \mathrm{~g}}\right), 90\left(\mathrm{a}_{\mathrm{g}}\right), \\ & 52\left(\mathrm{~b}_{2 \mathrm{u}}\right), 42\left(\mathrm{~b}_{3 \mathrm{u}}\right) \\ & \boldsymbol{E}=-3866.053104 \end{aligned}$	$\begin{aligned} & \mathrm{Ga}, 0,0.0689974265,-0.17378416,0 . \\ & \mathrm{Te}, 0,6.2371699912,-0.1722248249,0 . \\ & \mathrm{Te}, 0,1.9327159006,2.1184963302,0 . \\ & \mathrm{Ga}, 0,4.0488050117,0.9485285848,0 . \\ & 324 \\ & \begin{array}{llll} & \left(\mathrm{a}^{\prime}\right), & 151 & \text { (a'), } 126 \\ 59 & \text { (a') } \left.\mathrm{a}^{\prime}\right), 75 & \left(\mathrm{a}^{\prime}\right), \\ \boldsymbol{E}=-3865.690747 \end{array} \end{aligned}$
$n=3$	$\mathrm{v} / \mathrm{cm}^{-1}$	Te, $0,0.0792146787,0 ., 0.0904384145$ Ga,0,-0.0972181165,0.,2.6205665117 $\mathrm{Ga}, 0,2.6105346262,0 ., 0.2488557209$ Te,0,-0.3427510497,0.,4.9491905626 $\mathrm{Te}, 0,4.9512097755,0 ., 0.3122295071$ $359\left(\mathrm{a}_{1}\right), 350\left(\mathrm{~b}_{2}\right), 154\left(\mathrm{a}_{1}\right), 147\left(\mathrm{~b}_{2}\right)$, $84\left(a_{1}\right), 66\left(b_{1}\right), 61\left(a_{2}\right), 56\left(b_{2}\right), 15\left(a_{1}\right)$	Ga, $0,0.0000000002,0 .,-0.1820130873$ Ga, $0,0.0000000002,0 ., 3.0417422927$ Те, $0,2.0951428101,0 ., 1.3874523221$ Te, $0,-2.0951428097,0 ., 1.3874523221$ $\mathrm{Te}, 0,0.0000000002,0.5 .4855890189$ $281\left(a_{1}\right), 219\left(b_{2}\right), 178\left(a_{1}\right), 144\left(b_{2}\right)$, $125\left(a_{1}\right), 89\left(b_{1}\right), 80\left(a_{1}\right), 41\left(b_{2}\right), 32$ (b_{1})	Ga,0,0.,0.,0.129110857 Ga,0,0.,0.,2.9197501446 Te,0,2.1637007314,0.,1.3322375037 Te, $0,-2.1637007314,0 ., 1.3322375037$ Te,0,0.,0.,5.4068868397 $298\left(b_{2}\right), 284\left(a_{1}\right), 200\left(a_{1}\right), 154\left(b_{2}\right)$, $118\left(a_{1}\right), 104\left(a_{1}\right), 83\left(b_{1}\right), 49\left(b_{1}\right), 38$ (b_{2})
		$E=-3874.054184$	$E=-3874.165272$	$E=-3873.788824$

Table S7: Internal coordinates of the ground state geometries, harmonic vibrational wavenumbers (cm^{-1}), and energies (Hartree) with the MP2 level for $\mathrm{GaTe}_{n}(n=1-4)$ [Basis sets Ga: $6-311+\mathrm{G}(2 \mathrm{df})$ and Te: LANL2DZdp].

		Neutral GaTe $_{\boldsymbol{n}}$ Anion		Cation
$n=1$	$\mathrm{v} / \mathrm{cm}^{-1}$	Ga,0.,0.,-1.2366563355	Ga,0.,0.,-1.2840715309	Ga,0.,0.,-1.3658114171
		Te,0.,0.,1.1224173355	Te,0.,0., 1.1698325309	Te,0.,0., 1.2515724171
		$301\left(\sigma_{\mathrm{g}}\right)$	270 (σ_{g})	$148\left(\sigma_{\mathrm{g}}\right)$
		$E=-1931.407474$	$E=-1931.498509$	$E=-1931.11059$
$n=2$	$\mathrm{v} / \mathrm{cm}^{-1}$	Ga, 0.0603215288, $0.0268760863,0$.	Ga, $0 ., 0.0$.	Ga,1.8884954872,-1.022829965,0.
		Te, 2.8418201883,-0.2015368058,0.	Te,2.380792447,0.,0.	Te,-1.8397879234,-0.3635956037,0.
		Te,1.7505809851,2.2476710369,0.	Te,-2.380792447,0.,0.	Te,0.1254214362,1.3028685688,0.
		$299\left(\mathrm{a}_{1}\right), 226\left(\mathrm{a}_{1}\right), 178\left(\mathrm{~b}_{2}\right)$	$383\left(\sigma_{\mathrm{u}}\right), 180\left(\sigma_{\mathrm{g}}\right), 83\left(\pi_{\mathrm{u}}\right), 83\left(\pi_{\mathrm{u}}\right)$	$285\left(\mathrm{a}_{1}\right), 145\left(\mathrm{a}_{1}\right), 29\left(\mathrm{a}_{1}\right)$
		$E=-1939.4200812$	$\boldsymbol{E}=-1939.550661$	$E=-1939.135826$
$n=3$	$\mathrm{v} / \mathrm{cm}^{-1}$	Ga,0,0.3420671443,0.2025282795,0.	$\mathrm{Ga}, 0,-0.5545250834,-0.0785795994,0$.	$\mathrm{Ga}, 0$,
		Те, $0,2.4610529228,1.4489846399,0$.	Te, $0,-2.8671108016,-0.4480207436,0$.	$-0.0000100377,0.5158544103,0$.
		Te, $0,-0.6640743927,-2.0771105412,0$.	Te, $0,1.4535599688,1.6256139424,0$.	Te,0,-0.0000628096,2.9515408673,0.
		Te, $0,-2.1390456743,0.4255976218,0$.	Te, $0,1.8845514764,-1.0723704493,0$.	$\begin{aligned} & \mathrm{Te}, 0,-1.3793936337,-1.62955852,0 . \\ & \mathrm{Te}, 0,1.3794665225,-1.6294987462,0 . \end{aligned}$
		$\begin{aligned} & 348\left(a^{\prime}\right), 206\left(a^{\prime}\right), 176\left(a^{\prime}\right), 126\left(a^{\prime}\right), 76 \\ & \left(a^{\prime \prime}\right), 47\left(a^{\prime}\right) \end{aligned}$	$\begin{aligned} & 352\left(a_{1}\right), 186\left(a_{1}\right), 163\left(b_{2}\right), 131\left(a_{1}\right), \\ & 87\left(b_{1}\right), 62\left(b_{2}\right) \end{aligned}$	$\begin{aligned} & 682\left(\mathrm{~b}_{2}\right), 350\left(\mathrm{a}_{1}\right), 203\left(\mathrm{a}_{1}\right), 134\left(\mathrm{a}_{1}\right), \\ & 72\left(\mathrm{~b}_{1}\right), 51\left(\mathrm{~b}_{2}\right) \end{aligned}$
		$E=-1947.4229709$	$E=-1947.4223543$	$E=-1947.1621088$
$n=4$		Ga,0,0., $0 ., 0$.	Ga,0,0.,0.,0.9380157547	Ga,0., 0.0 .
		Te, 0,0.,1.4084805584,2.1239748626	Te, $0,0 ., 1.964664822,-0.74288137$	Te,0.,1.37879942,2.1694783807
		Te,0,0.,-1.4084805584,2.1239748626	Te,0,0.,0.,-2.7152568217	Te, 0.,-1.37879942,2.1694783807
		Te, 0, 1.4084805584,0.,-2.1239748626	Te, 0,0.,-1.964664822,-0.74288137	Te, 1.37879942,0.,-2.1694783807
		Te, $0,-1.4084805584,0 .,-2.1239748626$		Te,-1.37879942,0.,-2.1694783807

Te,0,0.,0.,3.3348137069
$\mathbf{v} / \mathbf{c m}^{\mathbf{- 1}} 5026(e), 5004(e), 382\left(b_{2}\right), 208\left(b_{2}\right), 326\left(a_{1}\right), 215\left(b_{2}\right), 186\left(a_{1}\right), 185\left(b_{2}\right), 1415(e), 1415(e), 334\left(b_{2}\right), 207\left(a_{1}\right)$, $195\left(a_{1}\right), 137(e), 137(e), 109\left(a_{1}\right), 43\left(b_{1}\right) \quad 148\left(a_{1}\right), 87\left(a_{1}\right), 87\left(b_{1}\right), 50\left(b_{2}\right), 25189\left(b_{2}\right), 112\left(a_{1}\right), 62(e), 62(e), 37$ (b_{1}) (b_{1})
$E=-1955.4271886$
$E=-1955.537391$ $E=-1955.181809$

Table S8: Internal coordinates of the ground state geometries, harmonic vibrational wavenumbers (cm^{-1}), and energies (Hartree) with the MP2 level for $\mathrm{Ga}_{2} \mathrm{Te}_{n}(n=1-4)$ [Basis sets Ga: $6-311+\mathrm{G}(2 \mathrm{df})$ and Te: LANL2DZdp].

	Neutral $\begin{array}{cc}\mathbf{G a}_{2} \mathbf{T e}{ }_{n} \\ \text { Anion }\end{array}$			
$n=1$	$\mathrm{v} / \mathrm{cm}^{-1}$	$\begin{aligned} & \mathrm{Te}, 0,-0.1391006558,-0.2134586178,0 . \\ & \mathrm{Ga}, 0,2.4462193,0.138250583,0 . \\ & \mathrm{Ga}, 0,-0.861439904,2.2936920849,0 . \\ & 212\left(\mathrm{~b}_{2}\right), 205\left(\mathrm{a}_{1}\right), 37\left(\mathrm{a}_{1}\right) \\ & \boldsymbol{E}=-\mathbf{3 8 5 4 . 8 9 8 8 5} \end{aligned}$	$\begin{aligned} & \mathrm{Te}, 0,-0.1556299095,-0.1157276688,0 . \\ & \mathrm{Ga}, 0,2.4887352519,0.1379530664,0 . \\ & \mathrm{Ga}, 0,0.8485427228,2.3436743615,0 . \\ & 222\left(\mathrm{a}_{1}\right), 150\left(\mathrm{~b}_{2}\right), 116\left(\mathrm{a}_{1}\right) \\ & \boldsymbol{E}=-\mathbf{3 8 5 4 . 9 4 7 5 2 8} \end{aligned}$	$\begin{aligned} & \mathrm{Te}, 0,-0.14353379,-0.2087336516,0 . \\ & \mathrm{Ga}, 0,2.7572154921,0.1469531086,0 . \\ & \mathrm{Ga}, 0,0.8047178221,2.1385379029,0 . \\ & 247\left(\mathrm{a}_{1}\right), 130\left(\mathrm{a}_{1}\right), 44\left(\mathrm{a}_{1}\right) \\ & \boldsymbol{E}=-\mathbf{3 8 5 4 . 6 2 1 8 9 8} \end{aligned}$
$n=2$	$\mathrm{v} / \mathrm{cm}^{-1}$	$\begin{aligned} & \mathrm{Ga}, 0,0 ., 1.9479477762,0.7568236244 \\ & \mathrm{Te}, 0,-1.3986868761,0 .,-0.6972786244 \\ & \mathrm{Te}, 0,1.3986868761,0 .,-0.6972786244 \\ & \mathrm{Ga}, 0,0 .,-1.9479477762,0.7568236244 \\ & 209\left(\mathrm{a}_{1}\right), 178 \quad\left(\mathrm{~b}_{2}\right), 158 \quad\left(\mathrm{a}_{1}\right), 134 \quad\left(\mathrm{~b}_{1}\right), \\ & 95\left(\mathrm{a}_{2}\right), 52\left(\mathrm{a}_{1}\right) \\ & \boldsymbol{E}=-3862.912699 \end{aligned}$	$\begin{aligned} & \mathrm{Ga}, 0,0 ., 0 .,-1.6127512738 \\ & \mathrm{Te}, 0,0 ., 2.0878788901,0 . \\ & \mathrm{Te}, 0,0 .,-2.0878788901,0 . \\ & \mathrm{Ga}, 0,0 ., 0 ., 1.6127512738 \\ & 914\left(\mathrm{~b}_{2 \mathrm{u}}\right), 221\left(\mathrm{~b}_{\mathrm{uu}}\right), 196\left(\mathrm{a}_{\mathrm{g}}\right), 167\left(\mathrm{~b}_{3 \mathrm{~g}}\right), \\ & 93\left(\mathrm{a}_{\mathrm{g}}\right), 47\left(\mathrm{~b}_{3 \mathrm{u}}\right) \\ & \boldsymbol{E}=-\mathbf{3 8 6 3 . 0 0 4 3 2 5} \end{aligned}$	$\begin{aligned} & \mathrm{Ga}, 0,0.3250113726,0.2154392632,0 . \\ & \mathrm{Te}, 0,6.0888481489,-0.2306196551,0 . \\ & \mathrm{Te}, 0,1.9133735242,2.1900769048,0 . \\ & \mathrm{Ga}, 0,3.9604552843,0.9769979436,0 . \\ & 372 \text { (a'), } 167 \text { (a'), } 140 \quad \text { (a'), } 80 \quad\left(\mathrm{a}^{\prime}\right), \\ & 65 \text { (a'), } 24 \text { (a') } \\ & \boldsymbol{E}=-3862.645467 \end{aligned}$
$n=3$	$\mathrm{v} / \mathrm{cm}^{-1}$	Te,-0.0462234305, $0 .,-0.0527727163$ Ga,0.0460244149,0.,2.4444656026 Ga,2.4170981027,0.,0.3676507728 Te,0.0755461699,0.,4.7599818012 Te,4.7085446573,0.,0.7019552565 $394\left(\mathrm{a}_{1}\right), 380\left(\mathrm{~b}_{2}\right), 176\left(\mathrm{a}_{1}\right), 155\left(\mathrm{~b}_{2}\right), 83$ $\left(a_{1}\right), 73\left(b_{1}\right), 66\left(a_{2}\right), 55\left(b_{2}\right), 18\left(a_{1}\right)$	$\mathrm{Ga}, 0,0.0000000002,0 .,-0.0804628427$ $\mathrm{Ga}, 0,0.0000000002,0 ., 3.0028313233$ Te,0,2.0738564649,0.,1.3958661484 Те, $0,-2.0738564645,0 ., 1.3958661484$ Te, $0,0.0000000002,0 ., 5.4061220932$ $307\left(a_{1}\right), 249\left(b_{2}\right), 204\left(a_{1}\right), 162\left(b_{2}\right)$, $135\left(a_{1}\right), 93\left(b_{1}\right), 85\left(a_{1}\right), 50\left(b_{2}\right), 29$ (b_{1})	Ga,0,0.,0.,0.2146846017 Ga,0,0.,0.,2.8751447405 $\mathrm{Te}, 0,2.1611541876,0 ., 1.3494178996$ Te, $0,-2.1611541876,0 ., 1.3494178996$ Te, $0,0 ., 0 ., 5.3315577077$ $328\left(b_{2}\right), 317\left(a_{1}\right), 220\left(a_{1}\right), 171\left(b_{2}\right)$, $130\left(a_{1}\right), 114\left(a_{1}\right), 87\left(b_{1}\right), 53\left(b_{1}\right), 40$ (b_{2})
		$E=-3870.9370802$	$E=-3871.038997$	$E=-3870.682646$

Ga,0,-1.4833755382,0.,0.
Ga,0,1.4833755382,0.,0. Te,0,0.,2.0616459329,0.
Te,0,0.,-2.0616459329,0.
Te,0,-3.9768912582,0.,0. Te,0,3.9768912582,0.,0.

Ga,0,0.,0.,1.5556482428
Ga,0,0.,0.,-1.5556482428
Te,0,0.,2.0346648431,0.
Те,0,0.,-2.0346648431,0.
Te,0,0.,0.,3.9893094887
Te,0,0.,0.,-3.9893094887

Ga, $0,0.0204960588,-0.0206445$, -0.0143528374
Te,0,2.7015085328,0.100904876, 0.0701528824

Te,0,-1.3667260559,2.1618310877, -0.1723255675
Ga,0,1.7059140185,-1.7182690927, -1.1946056967
Te,0,-0.6649190836,-2.1522443135, -1.4963216868
Te, $0,1.366726051,0.5914180385$, 2.0864885504
$\mathbf{v} / \mathbf{c m}^{-1} 308\left(\mathrm{a}_{\mathrm{g}}\right), 284\left(\mathrm{~b}_{1 \mathrm{u}}\right), 274\left(\mathrm{~b}_{2 \mathrm{u}}\right), 216\left(\mathrm{~b}_{3 \mathrm{~g}}\right), 346\left(\mathrm{~b}_{1 \mathrm{u}}\right), 314\left(\mathrm{a}_{\mathrm{g}}\right), 250\left(\mathrm{~b}_{2 \mathrm{u}}\right), 199\left(\mathrm{~b}_{3 \mathrm{~g}}\right)$, $166\left(\mathrm{a}_{\mathrm{g}}\right), 134\left(\mathrm{~b}_{1 \mathrm{u}}\right), 98\left(\mathrm{~b}_{3 \mathrm{u}}\right), 87\left(\mathrm{~b}_{2 \mathrm{~g}}\right), 78165\left(\mathrm{a}_{\mathrm{g}}\right), 140\left(\mathrm{~b}_{1 \mathrm{u}}\right), 97\left(\mathrm{~b}_{3 \mathrm{u}}\right), 90\left(\mathrm{~b}_{2 \mathrm{~g}}\right), 75$ $\left(\mathrm{a}_{\mathrm{g}}\right), 50\left(\mathrm{~b}_{3 \mathrm{~g}}\right), 36\left(\mathrm{~b}_{2 \mathrm{u}}\right), 11\left(\mathrm{~b}_{3 \mathrm{u}}\right) \quad\left(\mathrm{a}_{\mathrm{g}}\right), 50\left(\mathrm{~b}_{3 \mathrm{~g}}\right), 29\left(\mathrm{~b}_{2 \mathrm{u}}\right), 16\left(\mathrm{~b}_{3 \mathrm{u}}\right)$ $E=-3879.066654$
$968\left(b_{1}\right), 333\left(b_{2}\right), 303\left(a_{1}\right), 221\left(a_{1}\right)$,
$192\left(a_{1}\right), 158\left(b_{2}\right), 125\left(a_{1}\right), 97\left(a_{1}\right)$,
$72\left(\mathrm{~b}_{1}\right), 52\left(\mathrm{~b}_{1}\right), 44\left(\mathrm{~b}_{2}\right), 36\left(\mathrm{a}_{2}\right)$
$\boldsymbol{E}=-3878.951108$
$\boldsymbol{E}=-3879.066654$
$E=-3878.701154$

Table S9: Effective NAO electronic configurations (El.conf) and natural charges [$\mathrm{q}(\mathrm{M})$] of gallium atoms in neutral, negatively and positively charged $\mathrm{Ga}_{m} \mathrm{Te}_{n}(m=1,2$ and $n=1-4)$ clusters with the B3LYP functional [Basis sets Ga: 6-311+G(2df) and Te: LANL2DZdp]. ${ }^{[a]}$

	n			
	1	2	3	4
GaTe_{n}				
El.conf	$4 \mathrm{~s}^{0.73} 4 \mathrm{p}^{0.27}$	$4 s^{0.98} 4 \mathrm{p}^{0.35}$	$4 s^{0.59} 4 \mathrm{p}^{0.81}$	$4 \mathrm{~s}^{0.59} 4 \mathrm{p}^{0.84}$
$\mathrm{q}(\mathrm{Ga})$	0.49	0.16	0.09	0.05
GaTe_{n}^{-}				
El.conf	$4 \mathrm{~s}^{1.866} 4 \mathrm{p}^{1.08}$	$4 \mathrm{~s}^{1.17} 4 \mathrm{p}^{1.37}$	$4 \mathrm{~s}^{1.15} 4 \mathrm{p}^{1.47}$	$4 \mathrm{~s}^{1.16} 4 \mathrm{p}^{1.50}$
$\mathrm{q}(\mathrm{Ga})$	-0.006	0.43	0.33	0.29
$\mathrm{GaTe}_{n}{ }^{+}$				
El.conf	$4 \mathrm{~s}^{0.83} 4 \mathrm{p}^{0.08}$	$4 s^{0.98} 4 \mathrm{p}^{0.07}$	$4 s^{0.61} 4 p^{0.81}$	$4 s^{0.57} 4 p^{0.94}$
$\mathrm{q}(\mathrm{Ga})$	0.58	0.40	0.06	-0.04
$\mathrm{Ga}_{2} \mathrm{Te}_{n}$				
El.conf	$4 \mathrm{~s}^{1.93} 4 \mathrm{p}^{0.57}$	$4 \mathrm{~s}^{1.95} 4 \mathrm{p}^{0.62}$	$4 \mathrm{~s}^{1.20} 4 \mathrm{p}^{1.31}$	$4 s^{0.59} 4 p^{0.78}$
$\mathrm{q}(\mathrm{Ga})$	0.48	0.41	0.46	0.11
$\mathrm{Ga}_{2} \mathrm{Te}_{n}{ }^{-}$				
El.conf	$4 \mathrm{~s}^{0.93} 4 \mathrm{p}^{0.34}$	$4 \mathrm{~s}^{0.82} 4 \mathrm{p}^{0.49}$	$4 \mathrm{~s}^{0.67} 4 \mathrm{p}^{0.42}$	$4 s^{0.58} 4 p^{0.77}$
			$4 \mathrm{~s}^{0.58} 4 \mathrm{p}^{0.75}$	
$\mathrm{q}(\mathrm{Ga})$	0.21	0.17	$(0.39,0.15)$	0.13
$\mathrm{Ga}_{2} \mathrm{Te}_{n}{ }^{+}$				
El.conf	$4 \mathrm{~s}^{0.99} 4 \mathrm{p}^{0.12}$	$4 \mathrm{~s}^{0.99} 4 \mathrm{p}^{0.12}$	$4 \mathrm{~s}^{0.64} 4 \mathrm{p}^{0.54}$	$4 s^{0.58} 4 \mathrm{p}^{0.93}$
	$4 \mathrm{~s}^{0.76} 4 \mathrm{p}^{0.14}$	$4 \mathrm{~s}^{0.62} 4 \mathrm{p}^{0.63}$	$4 \mathrm{~s}^{0.61} 4 \mathrm{p}^{0.80}$	$4 s^{0.63} 4 p^{0.54}$
$\mathrm{q}(\mathrm{Ga})$	$(0.38,0.59)$	$(0.38,0.23)$	(0.31, 0.08)	$(-0.03,0.31)$

[a] All values are in e.

Table S10: ADEs, VDEs, VIPs (eV), HOMO-LUMO gaps (eV) and chemical hardness (η) of gallium telluride clusters with the B3LYP functional [Basis sets Ga : $6-311+\mathrm{G}(2 \mathrm{df})$ and Te : LANL2DZdp].

Clusters	ADE/eV	VDE/eV	VIP/eV	HOMO-LUMO gaps/eV	η
GaTe	2.67	2.69	8.16	3.99	2.74
GaTe_{2}	3.42	3.42	7.65	3.83	1.77
GaTe_{3}	3.31	3.52	7.36	2.97	1.92
GaTe_{4}	3.24	3.28	7.14	2.61	1.93
$\mathrm{Ga}_{2} \mathrm{Te}^{\mathrm{Ga}_{2} \mathrm{Te}_{2}}$	1.25	1.00	7.38	3.58	3.19
$\mathrm{Ga}_{2} \mathrm{Te}_{3}$	2.39	2.00	7.24	3.43	2.62
$\mathrm{Ga}_{2} \mathrm{Te}_{4}$	3.34	3.66	6.82	3.31	1.58

