Supplementary Information

Oxidation and reduction performance of 1,1,1-trichloroethane in aqueous solution by means of a combination of persulfate and zerovalent iron

Xiaogang Gu^{a,b}, Shuguang Lu^{a*}, Xuhong Guo^b, Jingke Sima^c, Zhaofu Qiu^a, Qian Sui^a

^a State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China

^b State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China

^c School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

* Corresponding author: Tel: +86 021 64250709, fax: +86 021 64252737, e-mail: <u>lvshuguang@ecust.edu.cn</u>

Lists of captions:

Text S1 Analytical methods for TCA and the intermediates.

- Fig. S1 Schematic diagram of the head-to-bottom rotation drum.
- **Fig. S2** TCA Control tests for volatilization, persulfate and Fe^{2+} alone after 12 h (Conditions: $[TCA]_0 = 0.15 \text{ mM}$, $[persulfate]_0 = 9.0 \text{ mM}$, $[Fe^{2+}]_0 = 8.9 \text{ mM}$; Note: the pH values of 2.5, 5, 7 were chosen as the pH during persulafte-ZVI system varied from 2.8 to 5.9).
- Fig. S3 Comparison of TCA degradation performance between persulfate-Fe²⁺ and persulfate-ZVI system (Conditions: $[TCA]_0 = 0.15 \text{ mM}$, $[Fe^{2+}]_0 = 8.9 \text{ mM}$, $[ZVI]_0 = 0.05 \text{ g}$, $[persulfate]_0 = 9.0 \text{ mM}$, 20 °C).
- Fig. S4 The solution pH variation in the persulfate-ZVI system (Conditions: $[TCA]_0 = 0.15 \text{ mM}$, $[persulfate]_0 = 9.0 \text{ mM}$, $[ZVI]_0 = 0.05 \text{ g}$, 20 °C).
- Fig. S5 Effect of Fe²⁺ on TCA degradation in the presence of ZVI alone (Conditions: $[TCA]_0 = 0.15 \text{ mM}, [Fe^{2+}]_0 = 8.9 \text{ mM}, [ZVI]_0 = 0.05 \text{ g}, 20 \text{ °C}).$

Text S1 Analytical methods for TCA and the intermediates.

Parameters	Conditions
Injection port	240 °C, split ratio: 20/1
Capillary column	DB–VRX, 60 m × 320 μ m i.d. × 1.4- μ m
Oven	Isothermal at 75 °C
Carrier gas	Nitrogen (>99.999%), 5 mL/min
Detector	Electron capture detector, 260 °C

(1) Operating conditions for TCA analysis by a GC

(2) Operating conditions for the volatile intermediates by an automatic purge

and trap (P&T) coupled to a GC/MS

1 mL of aqueous sample was removed into a 42 mL volatile organic analysis (VOA)

	Parameters	Conditions
P&T	Sample volume	5 mL
conditions	Gas flow	40 mL min ⁻¹
	Purge cycle	11 min at ambient temperature
	Desorb cycle	4 min at 180 °C
	Bake cycle	210 °C
GC/MS	Injection port	230 °C, split ratio: 15/1
conditions	Carrier gas	Helium, 1.2 mL/min
	Capillary column	DB-VRX, 60 m×320 µm i.d.×1.4-µm
	Oven program	40 °C (2min)
		250 °C at 20 °C min ⁻¹ (3min)
	Interface temperature	200 °C
	Ion source temperature	250 °C
	Mass range	TIM mode, <i>m/z</i> : 35-275

vial, and then the vial was fully filled by water for analysis.

Parameters	Conditions	
Injection port	200 °C, split ratio: 5/1	
Solvent delay	8 min	
Capillary column	DB–VRX, 60 m × 320 μ m i.d. × 1.4- μ m	
Carrier gas	Helium, 1.5 mL/min	
Oven program	35 °C (10min)	
	65 °C at 2 °C min ⁻¹ (5min)	
	280 °C at 20 °C min ⁻¹ (3min)	
Interface temperature	200 °C	
Ion source temperature	250 °C	
Mass range	TIM mode, <i>m/z</i> : 35-150	

(3) GC/MS conditions for the carboxylic acid intermediates

Fig. S1 Schematic diagram of the head-to-bottom rotation drum.

(1) Holder, (2) reaction vial (fixed by compartments), (3) the rotation drum, (4) motor.

Fig. S2 TCA Control tests for volatilization, persulfate and Fe^{2+} alone after 12 h $([TCA]_0 = 0.15 \text{ mM}, [persulfate]_0 = 9.0 \text{ mM}, [Fe^{2+}]_0 = 8.9 \text{ mM};$ Note: the pH values of 2.5, 5, 7 were chosen as the pH variation during persulafte-ZVI system was from 2.8 to 5.9)

Fig. S3 Comparison of TCA degradation performance between persulfate-Fe²⁺ and persulfate-ZVI system (Conditions: $[TCA]_0 = 0.15 \text{ mM}$, $[Fe^{2+}]_0 = 500 \text{ mg } L^{-1}$, $[ZVI]_0 = 0.05 \text{ g}$, $[persulfate]_0 = 9.0 \text{ mM}$, 20 °C).

Fig. S4 The solution pH variation in the persulfate-ZVI system (Conditions: $[TCA]_0 = 0.15 \text{ mM}$, $[persulfate]_0 = 9.0 \text{ mM}$, $[ZVI]_0 = 0.05 \text{ g}$, 20 °C).

Fig. S5 Effect of Fe²⁺ on TCA degradation in the presence of ZVI alone (Conditions: $[TCA]_0 = 0.15 \text{ mM}, [Fe^{2+}]_0 = 500 \text{ mg } L^{-1}, [ZVI]_0 = 0.05 \text{ g}, 20 \text{ °C}).$