Supplementary material captions

S1. Possible formation mechanism for carbon nano-onions and other products in TP-MWCNTs dispersions.

S2. (Supplementary Table 1). Raman spectra data of MWCNTs-TP interaction products and their comparison with those reported earlier.

S3. High resolution image of nano-onion structures.

S4. High-resolution image of products in concentrated dispersions TP-MWCNTs.

S5. XPS characterization results.

S1. Possible formation mechanism for carbon nano-onions and other products in TP-MWCNTs dispersions.

S3. High resolution image of nano-onion structures.

S4. High-resolution image of products in concentrated dispersions TP-MWCNTs.

S5. XPS characterization results.

Experimental Details

XPS characterization:

The chemical composition of one selected carbon nanotube sample was investigated by

X-ray photoelectron spectroscopy (XPS) on a Perkin-Elmer Phi 560 ESCA/SAM system and the spectra were acquired using a non-monochromated Al K α excitation source. The Al K α excitation is characteristic unresolved K $\alpha_{1,2}$ and has a characteristic energy of 1253.6 eV. Survey scans were conducted in the 0 to 1200-eV range at 0.5-eV steps. Highresolution scans were conducted for C 1s peak in the 280 to 294-eV range at 0.1-eV steps.

Results and Discussion

Fig. (a) presents general XPS survey spectrum of TF-CNT sample exhibiting mainly the presence of C, O, N, Na and Si. This presence of the Si was from the contamination of glass (the samples were synthesized in a glass vial under ultrasonic treatment and dried on glass surface). Fig. (b) shows the high-resolution XPS spectra of the C 1s peak which can be decomposed into the three components at binding energy of 284.4 eV, 286.7 eV and 290.5 eV that can be assigned to sp² C=C, C-O (>C=O or C-NH_x) and O-COO, respectively.¹

T.I.T. Okpalugo, P. Papakonstantinou, H. Murphy, J. McLaughlin, N.M.D. Brown, High resolution XPS characterization of chemical functionalized MWCNTs and SWCNTs, Carbon 43 (2005) 153–161

Monomeric TP ⁱ		MWCNTs; ⁱⁱ	Nano-onions; ⁱⁱⁱ	MWCNTs-TP
Frequency, cm ⁻¹	<i>I</i> _{rel.} , %	frequency, cm ⁻¹	frequency, cm ⁻¹	interaction product containing nano-onions; frequency, cm ⁻¹
1117	40			1040-1070, 1150
1210	90			
1320	90	1300-1320	1310-1350	1300-1320
1396	40			1390, 1440
1536	100	1590-1600	1600-1630	1580-1610
				1530-1540,
				1460-1470
		~2700	~2700, ~2800	~2650-2750

S2. Supplemental Table 1. Raman spectra data of MWCNTs-TP interaction products and their comparison with those reported earlier.

¹A.V. Feofanov, A.I. Grichine, L.A. Shitova, T.A. Karmakova, R.I. Yakubovskaya, M. Egret-Charlier, P. Vigny. Confocal Raman Microspectroscopy and Imaging Study of Theraphthal in Living Cancer Cells. *Biophys. J.*, 2000, **78**(1), 499–512.

ⁱⁱ C. Portet, G. Yushin, Y. Gogotsi. Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. *Carbon*, 2007, **45**, 2511–2518.

^{III} J.K. McDonough, A.I. Frolov, V. Presser, J. Niu, C.H. Miller, T. Ubieto, M.V. Fedorov, Y. Gogotsi. Influence of the structure of carbon onions on their electrochemical performance in supercapacitor electrodes. *Carbon*, 2012, **50**, 3298–3309.