Selective Recognition of Hydrogen Sulfide using Template

and Catalyst Free Grown ZnO Nanorods

Ganesh Kumar Mani and John Bosco Balaguru Rayappan*

Nano Sensors Lab @ Centre for Nano Technology & Advanced Biomaterials (CeNTAB) and

School of Electrical & Electronics Engineering (SEEE)

SASTRA University, Thanjavur 613 401, Tamil Nadu, India.

Supplementary Files

Figure S1 Enlarged view of lower concentration sensing response,

various concentration levels.

Material	Structure	Operating temperature (°C)	Concentr ation (ppm)	Response	Response time (s)	Recovery time (s)	Ref.
CuO-SnO ₂	Thin film	150	20	7341	14	118	(Chowdhur i et al., 2002)
ZnO	Single nanowire	RT	300	10	-	-	(Liao et al., 2007)
ZnO	Dendrites	RT	100	17.3	15	30	(Zhang et al., 2008)
ZnO	Porous	332	50	~ 200	6	10	(Liu et al., 2009)
In-doped ZnO	Thin film	250	1000	13000	2	240	(Badadhe and Mulla, 2009)
β-AgVO ₃	Nanowire	250	300	1.10	3	17	(Mai et al., 2010)
CuO-ZnO	Hollow spheres	336	5	32.4	47	-	(S. J. Kim et al., 2012)
a-Fe ₂ O ₃	Nanochain	285	5	4.7	8	65	(Ma et al., 2013)
CuO functionalized SnO ₂	Nanowire	300	10	15	9	8	(S. S. Kim et al., 2012)
Zn ₂ SnO ₄	Microcryst als	270	50	45	10	25	(Ma et al., 2012)

PVA-In ₂ O ₃	Nanocrysta ls	38	10	3	25	410	(Singhal et al., 2012)
NiO@ZnO heterostructure	Nanotubes	215	50	474	50	124	(Xu et al., 2012)
ZnO	Thin film	200	50	0.85	13	24	(Shewale et al., 2013)
Pt doped Tungsten oxide	Nanoneedl es	250	30	33	200	480	(Vallejos et al., 2014)
In ₂ O ₃ @ WO ₃	Nanoplates	150	5	63	5.5 min	16 min	(Yin et al., 2014)
In ₂ O ₃ /ZnO	Nanowire	RT	700	935	100	12 h	(Zang et al., 2014)
Cu doped SnO ₂	Nanoporou s	180	100	25.3%	10	42	(Zhang et al., 2014)
Mo-doped ZnO	Nanowire	300	5	14.11	-	-	(Woo et al., 2014)
CuO- functionalized ZnO	Nanotetrap ods	250	50	17	-	400	(Kaur et al., 2014)
ZnO	Nanoflowe r	RT	1	296	320	3592	(Hosseini et al., 2015)
ZnO	Nanorods	RT	100	111.42	23	64	Present Work

Supplementary Table References

- A. Chowdhuri, P. Sharma, V. Gupta, K. Sreenivas and K. V. Rao, *J. Appl. Phys.*, 2002, 92, 2172–2180.
- 2 L. Liao, H. B. Lu, J. C. Li, C. Liu, D. J. Fu and Y. L. Liu, *Appl. Phys. Lett.*, 2007, **91**, 14–17.
- 3 N. Zhang, K. Yu, Q. Li, Z. Q. Zhu and Q. Wan, J. Appl. Phys., 2008, 103, 104305 (1-6).
- 4 Z. Liu, T. Fan, D. Zhang, X. Gong and J. Xu, *Sensors Actuators, B Chem.*, 2009, **136**, 499–509.
- 5 S. S. Badadhe and I. S. Mulla, Sensors Actuators, B Chem., 2009, 143, 164–170.
- 6 L. Mai, L. Xu, Q. Gao, C. Han, B. Hu and Y. Pi, Nano Lett., 2010, 10, 2604–2608.
- S. J. Kim, C. W. Na, I. S. Hwang and J. H. Lee, *Sensors Actuators, B Chem.*, 2012, 168, 83–89.
- J. Ma, L. Mei, Y. Chen, Q. Li, T. Wang, Z. Xu, X. Duan and W. Zheng, *Nanoscale*, 2013, 5, 895–898.
- 9 S. S. Kim, H. G. Na, S.-W. Choi, D. S. Kwak and H. W. Kim, *J. Phys. D. Appl. Phys.*, 2012, 45, 205301.
- 10 G. Ma, R. Zou, L. Jiang, Z. Zhang, Y. Xue, L. Yu, G. Song, W. Li and J. Hu, *CrystEngComm*, 2012, 14, 2172–2179.
- A. Singhal, M. Kaur, K. a. Dubey, Y. K. Bhardwaj, D. Jain, C. G. S. Pillai and A. K. Tyagi, *RSC Adv.*, 2012, **2**, 7180–7189.
- L. Xu, R. Zheng, S. Liu, J. Song, J. Chen, B. Dong and H. Song, *Inorg. Chem.*, 2012, 51, 7733–7740.
- 13 P. S. Shewale, G. L. Agawane, S. W. Shin, a. V. Moholkar, J. Y. Lee, J. H. Kim and M. D. Uplane, *Sensors Actuators B Chem.*, 2013, **177**, 695–702.

- S. Vallejos, T. Stoycheva, F. E. Annanouch, E. Llobet, P. Umek, E. Figueras, C. Canè, I.
 Gràcia and C. Blackman, *RSC Adv.*, 2014, 4, 1489–1495.
- 15 L. Yin, D. Chen, M. Hu, H. Shi, D. Yang, B. Fan, G. Shao, R. Zhang and G. Shao, *J. Mater. Chem. A*, 2014, **2**, 18867–18874.
- W. Zang, Y. Nie, D. Zhu, P. Deng, L. Xing and X. Xue, J. Phys. Chem. C, 2014, 118, 9209– 9216.
- S. Zhang, P. Zhang, Y. Wang, J. Zhong and X. Sun, ACS Appl. Mater. Interfaces, 2014, 6, 14975–14980.
- 18 H.-S. Woo, C.-H. Kwak, I.-D. Kim and J.-H. Lee, J. Mater. Chem. A, 2014, 2, 6412–6418.
- M. Kaur, K. Ganapathi, V. Mukund, C. Jain, N. S. Ramgir, N. Datta, S. Bhattacharya, a. K. Debnath, D. K. Aswal and S. K. Gupta, *Mater. Chem. Phys.*, 2014, 143, 1319–1324.
- 20 Z. S. Hosseini, a. I. Zad and a. Mortezaali, Sensors Actuators B Chem., 2015, 207, 865–871.