Supporting information

Highly-sensitive label-free immunosensor for tumor necrosis factor α based on Ag@Pt core-shell nanoparticles supported on MWCNT as efficient electrocatalyst nanocomposite

Mohammad Mazloum-Ardakani*, Laleh Hosseinzadeh

Department of Chemistry, Faculty of Science, Yazd University, Yazd, 89195-741, Iran E-Mail: mazloum@yazduni.ac.ir Phone No: 00983518211670 Fax No: 00983518210644

Fig.S1 Equivalent circuits that fit with obtained EIS spectra.

Fig. S2 Optimization of: (A) incubation time and (B) the concentration of antibody, (C) incubation time of TNF- α protein. EIS responses were performed in 10 mM [Fe (CN)₆]^{3-/4-} in 0.1 M PBS (pH 7.4). (D) Optimization of catechol concentration. CV responses of the sensor at different concentration of catechol in 0.1 M PBS (pH 7.4). The values reported in the figures represent the mean value of 6 different measurements.

Table S1.

Table S1. Characteristics of different TNF- α immunosensors reported in the literature.

Tachniqua	Mathad	LOD	Precision, RSD	Samples	Dof
rechnique	Ivietnou	(pg mL ⁻¹)	%		Kei.
Impedance spectroscopy	Capacitor arrays	25	-	-	[1]
Electrochemistry	surface-initiated atom transfer radical polymerization	3.9	-	-	[2]
Electrochemistry	Ferrocene carboxylic acid functionalized self-assembled peptide nanowire	2	5.4	Human serum	[3]
Electrochemistry	Alkaline phosphatase functionalized nanospheres	10	5.7	Human serum	[4]
Electrochemistry	Aptasensor, methylene blue labelling	10000	-	Human blood	[5]
Electrochemistry	Conductive polymer	3.2	3.4	Human serum	[6]
QCM	MBs acustical amplification under magnetic field	25000		-	[7]
SPR	Gold nanoparticle enchancement	11.6	-	Human serum	[8]
Electrochemistry	bimetallic Ag@Pt core-shell nanoparticles supported on MWCNTs and chitosan	1.6	2.2	Human serum	This work

References

- A. Qureshi, J.H. Niazi, S. Kallempudi, Y. Gurbuz, Label-free capacitive biosensor for sensitive detection of multiple biomarkers using gold interdigitated capacitor arrays., Biosens. Bioelectron. 25 (2010) 2318–23.
- [2] L. Yuan, W. Wei, S. Liu, Label-free electrochemical immunosensors based on surfaceinitiated atom radical polymerization, Biosens. Bioelectron. 38 (2012) 79–85.
- [3] Z. Sun, L. Deng, H. Gan, R. Shen, M. Yang, Y. Zhang, Sensitive immunosensor for tumor necrosis factor α based on dual signal amplification of ferrocene modified self-assembled peptide nanowire and glucose oxidase functionalized gold nanorod., Biosens. Bioelectron. 39 (2013) 215–9.
- [4] Z. Yin, Y. Liu, L.-P. Jiang, J.-J. Zhu, Electrochemical immunosensor of tumor necrosis factor α based on alkaline phosphatase functionalized nanospheres., Biosens. Bioelectron. 26 (2011) 1890–4.
- [5] Y. Liu, Q. Zhou, A. Revzin, An aptasensor for electrochemical detection of tumor necrosis factor in human blood, Analyst. 138 (2013) 4321–4326.
- [6] M. Mazloum-Ardakani, L. Hosseinzadeh, Z. Taleat, Two kinds of electrochemical immunoassays for the tumor necrosis factor α in human serum using screen-printed graphite electrodes modified with poly (anthranilic acid), Microchim. Acta. (2014) 1–8.
- [7] Y.K. Bahk, H.H. Kim, D. Park, S. Chang, J.S. Go, A New Concept for Efficient Sensitivity Amplification of a QCM Based Immunosensor for TNF- α by Using Modified Magnetic Particles under Applied Magnetic Field, 32 (2011) 4215–4220.
- [8] J. Martinez-Perdiguero, A. Retolaza, L. Bujanda, S. Merino, Surface plasmon resonance immunoassay for the detection of the TNFα biomarker in human serum, Talanta. 119 (2014) 492–497.