Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015 ## Supplementary data ______ ## Mo(VI) complex supported on Fe₃O₄ nanoparticles: Magnetically separable nanocatalysts for selective oxidation of sulfides to sulfoxides Hasan Keypour^{#,a}, Masomeh Balali^a, Mohammad Mehdi Haghdoost^b, Mojtaba Bagherzadeh^{*,b} ^aChemistry Department, Bu-Ali Sina University, Hamedan Department of Chemistry, Bu-Ali Sina University, Hamadan. E-mail: haskey1@yahoo.com ^bChemistry Department, Sharif University of Technology, Tehran, Iran. Email:bagherzadeh@sharif.edu ______ Fig. S1. Energy dispersive X-ray (EDX) analysis of the $Fe_3O_4@SiO_2$ (2) nanoparticles showed expected elements such as iron, oxygen and silicon. **Fig. S2.** Energy dispersive X-ray (EDX) analysis of the $Fe_3O_4@SiO_2-NH_2$ (3) nanoparticles showed expected elements such as iron, oxygen, silicon, carbon and nitrogen. ______ Fig. 10. The XPS spectrum of Fe₃O₄@SiO₂-SB-Mo nanoparticle.