Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supplementary data

Mo(VI) complex supported on Fe₃O₄ nanoparticles: Magnetically separable nanocatalysts for selective oxidation of sulfides to sulfoxides

Hasan Keypour^{#,a}, Masomeh Balali^a, Mohammad Mehdi Haghdoost^b, Mojtaba Bagherzadeh^{*,b}

^aChemistry Department, Bu-Ali Sina University, Hamedan Department of Chemistry, Bu-Ali Sina University, Hamadan.

E-mail: haskey1@yahoo.com

^bChemistry Department, Sharif University of Technology, Tehran, Iran.

Email:bagherzadeh@sharif.edu

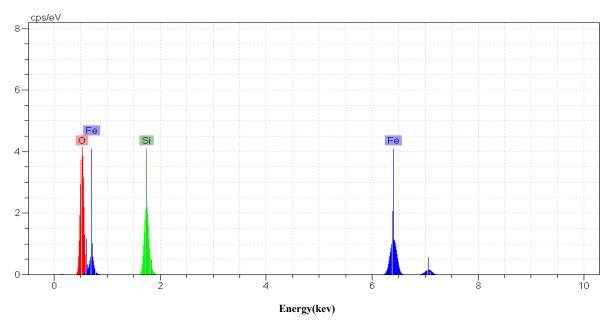
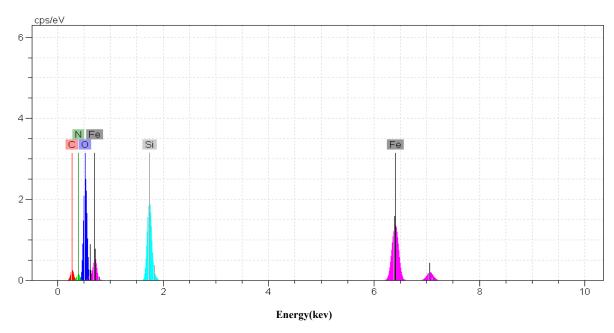



Fig. S1. Energy dispersive X-ray (EDX) analysis of the $Fe_3O_4@SiO_2$ (2) nanoparticles showed expected elements such as iron, oxygen and silicon.

Fig. S2. Energy dispersive X-ray (EDX) analysis of the $Fe_3O_4@SiO_2-NH_2$ (3) nanoparticles showed expected elements such as iron, oxygen, silicon, carbon and nitrogen.

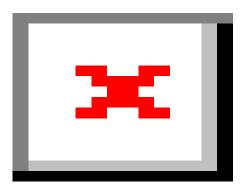


Fig. 10. The XPS spectrum of Fe₃O₄@SiO₂-SB-Mo nanoparticle.