Modified multicomponent Biginelli-Atwal reaction towards a straightforward construction of 5,6-dihydropyrimidin-4-ones

Etienne Pair, Vincent Levacher and Jean-François Brière*
Normandie Univ, COBRA, UMR 6014 et FR 3038; Univ Rouen; INSA Rouen; CNRS, IRCOF, 1 rue Tesnière, 76821 Mont Saint Aignan cedex, France.

I-General information 3
II-Optimization of reaction conditions 4
II-1 Solvent selection 4
II-2 Base screening. 5
II-3 Diastereoselective reaction 6
III-Experimental procedures 7
Meldrum's acid sodium salt ($4-\mathrm{Na}^{+}$) 7
III-1 Racemic synthesis of pyrimidinones 7
Representative general procedure for the synthesis of pyrimidinones 7
2-methoxy-6-phenyl-5,6-dihydropyrimidin-4-one (7aa) 8
2-methylthio-6-phenyl-5,6-dihydropyrimidin-4(3H)-one (7ba) 8
6-phenyl-2-(pyrazol-1-yl)-5,6-dihydropyrimidin-4-one (7ca). 9
2-methoxy-6-(4-methoxyphenyl)-5,6-dihydropyrimidin-4-one (7ab) 9
2-methoxy-6-(4-(trifluoromethyl)phenyl)-5,6-dihydropyrimidin-4(3H)-one (7ac) 10
6-(2-bromophenyl)-2-methoxy-5,6-dihydropyrimidin-4(3H)-one (7ad) 10
2-methoxy-6-(pyridin-3-yl)-5,6-dihydropyrimidin-4(3H)-one (7ae) 11
tert-butyl 3-(2-methoxy-5,6-dihydropyrimidin-4-one-6-yl)-indole-1-carboxylate (7ag) 11
2-methoxy-6-phenethyl-5,6-dihydropyrimidin-4-one (7ah) 12
6-isobutyl-2-methoxy-5,6-dihydropyrimidin-4-one (7ai). 13
6-isopropyl-2-methoxy-5,6-dihydropyrimidin-4-one (7aj). 13
6-cyclohexyl-2-methoxy-5,6-dihydropyrimidin-4-one (7ak) 14
2-methoxy-6-(2-((tert-butoxycarbonyl)amino)ethyl)-5,6-dihydropyrimidin-4-one (7al). 14
6-((2S,5R,6R)-5,6-dimethoxy-5,6-dimethyl-1,4-dioxan-2-yl)-2-methoxy-5,6-dihydropyrimidin- 4(3H)-one (7am) 15
5-(((amino(iminio)methyl)amino)(phenyl)methyl)-2,2-dimethyl-4-oxo-1,3-dioxin-6-olate (10). 16 16
III-2 Diastereoselective synthesis of pyrimidinones 16
Representative general procedure for the diastereoselective synthesis of pyrimidinones 16
(3R,5S)-3,5-diphenyl-2,3,5,6-tetrahydro oxazolo [3,2-a] pyrimidin-7-one (13a) 17
($3 R, 7 R$)-3,7-diphenyl-2,3,6,7-tetrahydro oxazolo [3,2-a] pyrimidin-5-one (15a) 17
(3R,5S)-3-(4-methoxyphenyl)-5-phenyl-2,3,5,6-tetrahydro oxazolo [3,2-a] pyrimidin-7-one (13b). 18
(3R,5S)-3-phenyl-5-(4-trifluoromethylphenyl)-2,3,5,6-tetrahydro oxazolo [3,2-a] pyrimidin-7- one (13c). 18
($3 R, 5 R$)-5-butyl-3-phenyl-2,3,5,6-tetrahydro oxazolo [3,2-a] pyrimidin-7-one (13n) 20
III-3 Chemical Transformations 21
6-phenyldihydropyrimidine-2,4-dione. (17) 21
(6S)-6-phenyldihydropyrimidine-2,4-dione (17) 21
(6R)-6-phenyldihydropyrimidine-2,4-dione (17). 22
tert-butyl 2-methoxy-4-oxo-6-phenyl-5,6-dihydropyrimidine-1-carboxylate (18) 22
tert-butyl 2-methylthio-4-oxo-6-phenyl-5,6-dihydropyrimidine-1-carboxylate (19). 23
tert-butyl 2-amino-4-oxo-6-phenyl-5,6-dihydropyrimidine-1-carboxylate (20) 23
tert-butyl 4-oxo-6-phenyltetrahydropyrimidine-1-carboxylate (21) 24
IV-NMR spectra and HPLC chromatograms 25
Meldrum's acid sodium salt $\left(4^{-} \mathrm{Na}^{+}\right)$ 25
2-methoxy-6-phenyl-5,6-dihydropyrimidin-4-one (7aa) 26
2-methylthio-6-phenyl-5,6-dihydropyrimidin-4(3H)-one (7ba) 27
6-phenyl-2-(pyrazol-1-yl)-5,6-dihydropyrimidin-4-one (7ca). 28
2-methoxy-6-(4-methoxyphenyl)-5,6-dihydropyrimidin-4-one (7ab) 29
2-methoxy-6-(4-(trifluoromethyl)phenyl)-5,6-dihydropyrimidin-4(3H)-one (7ac) 30
6-(2-bromophenyl)-2-methoxy-5,6-dihydropyrimidin-4(3H)-one (7ad) 31
2-methoxy-6-(pyridin-3-yl)-5,6-dihydropyrimidin-4(3H)-one (7ae) 32
tert-butyl 3-(2-methoxy-5,6-dihydropyrimidin-4-one-6-yl)-indole-1-carboxylate (7ag) 33
2-methoxy-6-phenethyl-5,6-dihydropyrimidin-4-one (7ah) 34
6-isobutyl-2-methoxy-5,6-dihydropyrimidin-4-one (7ai). 35
6-isopropyl-2-methoxy-5,6-dihydropyrimidin-4-one (7aj) 36
6-cyclohexyl-2-methoxy-5,6-dihydropyrimidin-4-one (7ak) 37
2-methoxy-6-(2-((tert-butoxycarbonyl)amino)ethyl)-5,6-dihydropyrimidin-4-one (7al) 38
6-((2S,5R,6R)-5,6-dimethoxy-5,6-dimethyl-1,4-dioxan-2-yl)-2-methoxy-5,6-dihydropyrimidin- 4(3H)-one (7am) 39
5-(((amino(iminio)methyl)amino)(phenyl)methyl)-2,2-dimethyl-4-oxo-1,3-dioxin-6-olate (10). 40
$(3 R, 5 S)$-3,5-diphenyl-2,3,5,6-tetrahydro oxazolo [3,2-a] pyrimidin-7-one (13a) 41
(3R,5S)-3-(4-methoxyphenyl)-5-phenyl-2,3,5,6-tetrahydro oxazolo [3,2-a] pyrimidin-7-one (13b). 42
(3R,5S)-3-phenyl-5-(4-trifluoromethylphenyl)-2,3,5,6-tetrahydro oxazolo [3,2-a] pyrimidin-7-one(13c).43
(3R,5R)-5-butyl-3-phenyl-2,3,5,6-tetrahydro oxazolo [3,2-a] pyrimidin-7-one (13n). 44
$(3 R, 7 R)$-3,7-diphenyl-2,3,6,7-tetrahydro oxazolo [3,2-a] pyrimidin-5-one (15a) 45
6-phenyldihydropyrimidine-2,4-dione. (17). 46
tert-butyl 2-methoxy-4-oxo-6-phenyl-5,6-dihydropyrimidine-1-carboxylate (18) 49
tert-butyl 2-methylthio-4-oxo-6-phenyl-5,6-dihydropyrimidine-1-carboxylate (19) 50
tert-butyl 2-amino-4-oxo-6-phenyl-5,6-dihydropyrimidine-1-carboxylate (20) 51
tert-butyl 4-oxo-6-phenyltetrahydropyrimidine-1-carboxylate (21) 52

I-General information

Reactions were performed using oven dried glassware under inert atmosphere of dry argon or nitrogen and monitored by thin-layer chromatography with silica gel 60 F 254 pre-coated aluminium plates $(0.25 \mathrm{~mm})$. Visualization was performed under UV light and KMnO_{4} oxidation. Filtrations were performed on Celite ${ }^{\circledR} 545$. Chromatographic purification of compounds was achieved with 60 silica gel $(40-63 \mu \mathrm{~m}) .{ }^{1}$ Toluene and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were dried by refluxing over CaH_{2} and then distilled. Unless otherwise noted, all reagent-grade chemicals and solvents were used as supplied (analytical or HPLC grade) without prior purification. Melting points were measured on a Stuart ${ }^{\text {TM }}$ SMP3 melting point apparatus with a precision of $+/-1.5^{\circ} \mathrm{C}$ and are uncorrected. Infrared spectra (IR) were recorded on a PerkinElmer Spectrum 100 Series FT-IR spectrometer. Liquids and solids were applied on the Single Reflection Attenuated Total Reflectance (ATR) Accessories. Data are reported in cm^{-1}. Optical rotations were determined with a Perkin-Elmer 341 polarimeter with a waterjacketed 10 cm cell. Specific rotations are reported in 10^{-1} deg. $. \mathrm{cm}^{2} . \mathrm{g}^{-1}$ and concentrations in g per $100 \mathrm{~mL} .{ }^{1} \mathrm{H}$ Spectra (300 MHz) and ${ }^{13} \mathrm{C}$ NMR spectra (75 MHz) were recorded on a Bruker Advance300 spectrometer. The field was locked by external referencing to the relevant deuteron resonance. Data appear in the following order: chemical shifts in ppm which were referenced to the internal solvent signal, number of protons, multiplicity (s, singlet; d, doublet; t, triplet; $d d$, doublet of doublet, $d d d$, doublet of doublet of doublet, $d d t$, doublet of triplet, m, multiplet) and coupling constant J in Hertz. The abbreviation $A r$ is used to denote aromatic, br. to denote broad and app. to denote apparent. Coupling constants, J, are measured to the nearest 0.1 Hz and are presented as observed. Accurate Mass measurements (HRMS) were recorded with a Waters LCP 1er XR spectrometer. HPLC analyses were performed with Daicel Chiralpak ${ }^{\circledR}$ columns ($4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$) and a mixture of heptane $/ i$-PrOH solvents. A spectrosystem UV 1000 thermofisher detector and a chiral detector (polarimeter) JACSCO OR-1590 were used.

[^0]
II-Optimization of reaction conditions

II-1 Solvent selection

In order to prevent solubility issues, the screening of solvents was carried directly from O-methylisourea. Nevertheless, precipitation events did occurred, except in DMF, alcoholic solvents or $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ mixture. Furthermore, we homogeneously employed Hünig's base as acceleration was observed, although this was not general.

		DIPEA (0.20 equiv.) Solvent (0.10 M) $40^{\circ} \mathrm{C}, 24 \mathrm{~h}$	
Entry ${ }^{a}$	Solvent		Yield (\%) ${ }^{\text {b,c }}$
1	Toluene		0
2	$\mathrm{CF}_{3} \mathrm{Ph}$		1
3	THF		7
4	1,4-dioxane		8
5	AcOEt		4
6	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$		47
7	MeCN		55
8	DMF		51
9	$\mathrm{H}_{2} \mathrm{O}$		37
10	MeOH		85
11	EtOH		98
12	$i-\mathrm{PrOH}$		82
13	$\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ (9/1)		90
14	MeCN/EtOH (9/1)		91

[^1]
II-2 Base screening

	 4	5a	$\begin{array}{r} \mathrm{Ba} \\ \quad(1.1 \mathrm{\epsilon} \\ \hline \text { Solver } \end{array}$		
Entry ${ }^{a}$	Solvent	Conc. (M)	Base	T (${ }^{\circ} \mathrm{C}$)	Yield (\%) ${ }^{\text {b,c }}$
1	EtOH	0.10	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	40	81
2	$\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ (9/1)	0.10	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	40	87
3	$\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ (9/1)	0.10	-	40	2
4	$\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ (9/1)	0.10	NaOH	40	79
5	$\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ (9/1)	0.10	$\mathrm{K}_{2} \mathrm{CO}_{3}$	40	79
6	$\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ (9/1)	0.10	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	40	59
7	$\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ (9/1)	0.10	NaHCO_{3}	40	83
8	$\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ (9/1)	0.25	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	20	7
9	$\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ (9/1)	0.25	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	40	92
10	MeCN/ $\mathrm{H}_{2} \mathrm{O}$ (9/1)	0.25	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	60	88

[^2]
II-3 Diastereoselective reaction

 4 $4-\mathrm{Na}^{+}$		$\stackrel{O}{P h}^{1}$ 5a					
Entry ${ }^{\text {a }}$	$\begin{gathered} 4 \text { or } \\ 4^{-} \mathrm{Na}^{+} \end{gathered}$	$\begin{gathered} 11 \text { or } \\ 12 \end{gathered}$	Base	Solvent	13a/14a/15a/16a ${ }^{\text {b }}$	$13 \mathrm{a} / 14 a^{b}$	$15 \mathrm{a} / 16 \mathrm{a}^{\text {b }}$
1	4	12	$\mathrm{Na}_{2} \mathrm{CO}$ 1.1 equiv.	$\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ (9/1)	45/5/43/7	90/10	86/14
2	$\mathbf{4}^{-\mathrm{Na}^{+}}$	12	-	$\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ (9/1)	61/5/29/5	92/8	85/15
3	4	11	-	$\underset{(9 / 1)}{\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}}$	64/6/25/5	91/9	83/17
4	4	11	-	EtOH	(68)/25/7	n.d.	78/22

${ }^{a}$ Reaction conditions: Meldrum's acid $\mathbf{4}(0.10 \mathrm{mmol})$ or Meldrum's acid sodium salt $\mathbf{4}^{-} \mathbf{N a}^{+}(0.10 \mathrm{mmol})$, benzaldehyde 5a (1.0 equiv.), (4R)-4-phenyloxazolidin-2-ylidene amine $\mathbf{1 2}$ (1.0 equiv.) or ($4 R$)-4-phenyloxazolidin-2-ylidene amine hydrochloride salt 11 (1.0 equiv.) in solvent (0.25 M) during 24 hours. ${ }^{b}$ Ratio determined by NMR.
Entry ${ }^{\text {a }}$

[^3]
III-Experimental procedures

Meldrum's acid sodium salt $\left(4-\mathbf{N a}^{+}\right) .{ }^{\mathbf{2}}$
To a solution of Meldrum's acid $4\left(360 \mathrm{mg}, 2.50 \mathrm{mmol}, 1.0\right.$ equiv.) in ethanol (10.0 mL) at $0^{\circ} \mathrm{C}$ under argon atmosphere was added sodium ethoxide (0.52 M) in ethanol ($10 \mathrm{~mL}, 5.2 \mathrm{mmol}$, 2.1 equiv.). The mixture was allowed to warm to room temperature and stirred for 1 hour. The crude mixture was evaporated under reduced pressure and the residue precipitated in pentane to afford the title product as a white solid, ($330.0 \mathrm{mg}, 1.98 \mathrm{mmol}, 79 \%$). IR (neat) $v_{\max } 2993,1591,1335,1243$, 1197, 1020, $780 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (300 MHz ; DMSO-d ${ }_{6}$) $\delta_{\mathrm{H}} 3.22(1 \mathrm{H}, \mathrm{s}), 1.42(6 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (75 MHz; DMSO-d ${ }_{6}$) $\delta_{\mathrm{C}} 162.2(\mathrm{C}=\mathrm{O}), 99.9(\mathrm{C}), 62.6(\mathrm{CH}), 26.0\left(\mathrm{CH}_{3}\right)$. HRMS $\left(\mathrm{ESI}^{-}\right)$: calcd for $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{4}\left[(2 \mathrm{M}+\mathrm{Na})^{-}\right]: 305.0592$; Found: 305.0592.

III-1 Racemic synthesis of pyrimidinones

Representative general procedure for the synthesis of pyrimidinones.

Meldrum's acid 4 ($72.1 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv.), sodium carbonate ($58.4 \mathrm{mg}, 0.55 \mathrm{mmol}$, 1.1 equiv.) and isourea salt $\mathbf{1}$ under nitrogen atmosphere were dissolved in acetonitrile (1.8 mL) and water (0.2 mL). The aldehyde $\mathbf{5}$ was then added and the mixture stirred at $40^{\circ} \mathrm{C}$ (oil bath temperature) for 24 hours. The crude reaction mixture was diluted with ethyl acetate and filtrated through celite. The filtrate was evaporated under reduced pressure and the resulting mixture was purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98 / 2$ unless otherwise mentioned) to afford product 7 .

[^4]

2-methoxy-6-phenyl-5,6-dihydropyrimidin-4-one (7aa).
The title compound was prepared according to the above general procedure from benzaldehyde 5a ($51 \mu \mathrm{l}, 0.50 \mathrm{mmol}, 1.0$ equiv.) and O-methylisourea hemisulfate salt $1 \mathbf{a}(61.8 \mathrm{mg}, 0.50 \mathrm{mmol}$, 1.0 equiv.). The product was isolated as a white solid ($80.9 \mathrm{mg}, 0.395 \mathrm{mmol}, 79 \%$), displaying a 86/14 mixture of $\Delta^{1,2}$ (majo) and $\Delta^{2,3}$ (mino) isomers by ${ }^{1} \mathrm{H} \mathrm{NMR}$ in $\mathrm{CDCl}_{3} . R_{f}=0.23$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98 / 2\right)$. m.p. $146^{\circ} \mathrm{C}$. IR (neat) $v_{\max } 3103,2943,1678,1450,1246,757,693 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.82(1 \mathrm{H}$ majo, br s), 7.41-7.28(5H majo and mino, m), $5.61(1 \mathrm{H}$ mino, br s), $4.78(1 \mathrm{H}$ majo, dd, $J=11.7,5.3 \mathrm{~Hz}), 4.73(1 \mathrm{H}$ mino, m), $3.95(3 \mathrm{H}$ mino, s), $3.87(3 \mathrm{H}$ majo, s), 2.79 (1 H mino, m), 2.78 (1 H majo, dd, $J=16.7,5.3 \mathrm{~Hz}$), $2.66(1 \mathrm{H}$ mino, dd, $J=15.7,11.4$ $\mathrm{Hz}), 2.45(1 \mathrm{H}$ majo, dd, $J=16.7,11.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 178.3(\mathrm{C}=\mathrm{O}$ mino $), 171.3$ ($\mathrm{C}=\mathrm{O}$ majo), 165.2 (C2 mino), 151.1 (C 2 majo), 142.7 (C Ar majo), 139.3 (C Ar mino), 129.4 (CH mino), 129.0 (CH mino), 128.8 (CH majo), 127.5 (CH majo), 126.4 (CH majo and mino), $56.0(\mathrm{CH}$ majo), $55.3\left(\mathrm{CH}_{3}\right.$ mino $), 54.4\left(\mathrm{CH}_{3}\right.$ majo $), 54.2(\mathrm{CH}$ mino $), 39.1\left(\mathrm{CH}_{2}\right.$ mino $), 38.4\left(\mathrm{CH}_{2}\right.$ majo $)$. HRMS (ESI $\left.{ }^{+}\right)$: calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$: 205.0972 ; Found: 205.0977.

2-methylthio-6-phenyl-5,6-dihydropyrimidin-4(3H)-one (7ba).
The title compound was prepared according to the above general procedure with benzaldehyde 5a ($51 \mu \mathrm{l}, 0.50 \mathrm{mmol}, 1.0$ equiv.) and S-methyl isothiourea hemisulfate salt $\mathbf{1 b}(69.7 \mathrm{mg}, 0.50 \mathrm{mmol}$, 1.0 equiv.). The product was obtained as a white solid ($104.7 \mathrm{mg}, 0.475 \mathrm{mmol}, 95 \%$). The data were in accordance with literature. ${ }^{3} \quad R_{f}=0.37 \quad\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98 / 2\right)$. m.p. $165-166{ }^{\circ} \mathrm{C} . \quad{ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 8.10(1 \mathrm{H}, \mathrm{m}), 7.39-7.28(5 \mathrm{H}, \mathrm{m}), 4.84(1 \mathrm{H}, \mathrm{dd}, J=12.2,5.2 \mathrm{~Hz}), 2.83(1 \mathrm{H}$, $\mathrm{dd}, J=16.7,5.2 \mathrm{~Hz}), 2.56-2.47(1 \mathrm{H}, \mathrm{m}), 2.50(3 \mathrm{H}, \mathrm{s})$.

[^5]

6-phenyl-2-(pyrazol-1-yl)-5,6-dihydropyrimidin-4-one (7ca).
The title compound was prepared according to the above general procedure from benzaldehyde 5a ($51 \mu \mathrm{l}, 0.50 \mathrm{mmol}, 1.0$ equiv.) and pyrazole-1-carboximidamide hydrochloride salt ${ }^{4} \mathbf{1 c}(73.5 \mathrm{mg}$, $0.50 \mathrm{mmol}, 1.0$ equiv.). The product was isolated as a transparent oil ($104.3 \mathrm{mg}, 0.434 \mathrm{mmol}, 87 \%$), displaying a $82 / 18$ mixture of $\Delta^{1,2}$ (majo) and $\Delta^{2,3}$ (mino) by ${ }^{1} \mathrm{H}$ NMR. $R_{f}=0.05-0.15$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98 / 2\right)$. IR (neat) $v_{\text {max }} 3400,3247,3150,3063,3030,2901,1721,1678,1474,1391$, 1280, 1205, $928,759,697 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 9.35(1 \mathrm{H}$ majo, br s), $8.54(1 \mathrm{H}$ mino, s), $8.39(1 \mathrm{H}$ majo, d, $J=2.5 \mathrm{~Hz}$), 7.91 (1 H mino, br s), $7.73(1 \mathrm{H}$ mino, s), $7.68(1 \mathrm{H}$ majo, s$)$, 7.41-7.29 (5 H majo and mino, m), 6.48 (1 H , majo and mino, s), 4.99 (1 H majo and mino, dd, $J=12.2,5.4 \mathrm{~Hz}$), 2.99-2.77 (2 H mino, m), $2.90(1 \mathrm{H}$ majo, dd, $J=16.8,5.4 \mathrm{~Hz}$), 2.61 (1 H majo, dd, $J=16.8,12.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 177.6$ ($\mathrm{C}=\mathrm{O}$ mino), $169.0(\mathrm{C}=\mathrm{O}$ majo), $154.8(\mathrm{C} 2$ mino), 144.4 (CH mino, C3"), 142.1 (C 2 majo, C 4), 142.0 (CH majo, C3"), 141.9 (C Ar majo), 138.6 (C Ar mino), 129.7 (CH mino), 129.5 (CH mino), 129.2 (CH mino), 128.9 (CH majo), 127.72 (CH majo), 127.67 (CH majo), 126.4 (CH majo and mino, C^{\prime}), 109.9 (CH mino, C 4 "), 109.5 (CH majo, C4"), $57.1\left(\mathrm{CH}\right.$ majo), $54.4(\mathrm{CH}$ mino $), 38.8\left(\mathrm{CH}_{2}\right.$ mino $), 38.2\left(\mathrm{CH}_{2}\right.$ majo). HRMS (ESI $\left.{ }^{+}\right)$: calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}\left[(\mathrm{M}+\mathrm{H})^{+}\right]:$241.1084; Found: 241.1099.

2-methoxy-6-(4-methoxyphenyl)-5,6-dihydropyrimidin-4-one (7ab).
The title compound was prepared according to the above general procedure from p-anisaldehyde $\mathbf{5 b}$ ($61 \mu \mathrm{l}, 0.50 \mathrm{mmol}, 1.0$ equiv.) and O-methylisourea hemisulfate salt $\mathbf{1 a}$ ($61.8 \mathrm{mg}, 0.50 \mathrm{mmol}$, 1.0 equiv.). The product was isolated as a light yellow solid ($86.4 \mathrm{mg}, 0.37 \mathrm{mmol}, 74 \%$), displaying a 83/17 mixture of $\Delta^{1,2}$ (majo) and $\Delta^{2,3}$ (mino) isomers by ${ }^{1} \mathrm{H}$ NMR in CDCl_{3}. $R_{f}=0.17$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98 / 2\right)$. m.p. $133{ }^{\circ} \mathrm{C}$. IR (neat) $v_{\max } 3196,3115,2961,2914,2836,1709,1673,1513$, 1485, 1239, 1210, 1183, 1029, 906, 828, $708 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 7.89$ (1 H majo, br s), 7.30-7.26 (2 H majo and mino, d, 8.7 Hz), 6.91-6.88 (2 H majo and mino, d, 8.7 Hz), $5.60(1 \mathrm{H}$

[^6]mino, br s), 4.74-4.69 (1 H majo and mino, m), 3.86 (3 H majo and mino, br s), 3.80 (3 H majo and mino, s), 2.75 (1 H majo and mino, dd, $J=16.5,5.3 \mathrm{~Hz}$), 2.48-2.39 ($1 \mathrm{H}, \mathrm{m}$). ${ }^{13} \mathrm{C}$ NMR (75 MHz ; CDCl_{3}) $\delta_{\mathrm{C}} 178.7$ ($\mathrm{C}=\mathrm{O}$ mino), 172.0 ($\mathrm{C}=\mathrm{O}$ majo), 165.2 (C 4 ' mino), 159.9 (C 2 mino), 158.8 ($\mathrm{C} 4 ’$ majo), 151.1 (C 2 majo), 134.8 (C 1 ' majo), 131.3 (C 1 ' mino), 127.5 (CH mino), 127.3 (CH majo), $114.5(\mathrm{CH}$ mino $), 114.0(\mathrm{CH}$ majo $), 55.33\left(\mathrm{OCH}_{3}\right.$ majo $), 55.26(\mathrm{CH}$ majo $), 55.1\left(\mathrm{OCH}_{3}\right.$ mino $), 54.2$ (ArOCH_{3} majo and mino), $53.3(\mathrm{CH}$ mino $), 38.9\left(\mathrm{CH}_{2}\right.$ mino $), 38.3\left(\mathrm{CH}_{2}\right.$ majo $)$. HRMS (ESI $)$: calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$: 235.1077; Found: 235.1080

2-methoxy-6-(4-(trifluoromethyl)phenyl)-5,6-dihydropyrimidin-4(3H)-one (7ac).
The title compound was prepared according to the above general procedure from 4-trifluoromethylbenzaldehyde $\mathbf{5 c}(69 \mu \mathrm{l}, 0.50 \mathrm{mmol}, 1.0$ equiv.) and O-methylisourea hemisulfate salt $1 \mathbf{1 a}(61.8 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv.). The product was isolated as a white solid (107.3 mg , $0.395 \mathrm{mmol}, 79 \%) . R_{f}=0.37\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98 / 2\right)$. m.p. $139-140^{\circ} \mathrm{C}$. IR (neat) $v_{\max } 3202,3105$, 2956, 2914, 1716, 1679, 1485, 1326, 1265, 1160, 1112, 1068, 1056, $1018 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz ; $\left.\mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.92(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.63(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 7.52(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 4.82(1 \mathrm{H}, \mathrm{dd}, J=12.2$, $5.2 \mathrm{~Hz}), 3.88(3 \mathrm{H}, \mathrm{s}), 2.79(1 \mathrm{H}, \mathrm{dd}, J=16.7,5.1 \mathrm{~Hz}), 2.42(1 \mathrm{H}, \mathrm{dd}, J=16.6,12.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 171.5(\mathrm{C}=\mathrm{O}), 151.7(\mathrm{C} 2), 146.8\left(\mathrm{C} 1^{\prime}\right), 129.7\left(\mathrm{C} 4 ', \mathrm{q}, J=32 \mathrm{~Hz}\right.$), 126.8 ($\mathrm{C} 2^{\prime}$), $125.7(\mathrm{CH}, \mathrm{C} 3 ', \mathrm{~d}, J=3.5 \mathrm{~Hz}), 124.2\left(\mathrm{CF}_{3}, \mathrm{q}, J=272 \mathrm{~Hz}\right), 55.7(\mathrm{CH}), 54.4\left(\mathrm{CH}_{3}\right), 38.1\left(\mathrm{CH}_{2}\right)$. HRMS (ESI ${ }^{+}$): calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$: 273.0845; Found: 273.0843.

6-(2-bromophenyl)-2-methoxy-5,6-dihydropyrimidin-4(3H)-one (7ad).
The title compound was prepared according to the above general procedure from 2-bromobenzaldehyde $97 \% \mathbf{5 d}(60 \mu \mathrm{l}, 0.50 \mathrm{mmol}, 1.0$ equiv.) and O-methylisourea hemisulfate salt 1a ($61.8 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv.). The product was isolated as a white solid (119.8 mg , $0.425 \mathrm{mmol}, 85 \%) . R_{f}=0.30\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98 / 2\right)$. m.p. $133^{\circ} \mathrm{C}$. IR (neat) $v_{\max } 3203,3112,2957$, 2913, 1718, 1681, 1261, $759 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 7.64(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.58-7.54(2 \mathrm{H}$, m), $7.36(1 \mathrm{H}, \mathrm{td}, J=7.6,1.0 \mathrm{~Hz}), 7.16(1 \mathrm{H}, \mathrm{td}, J=7.6,1.6 \mathrm{~Hz}), 5.11(1 \mathrm{H}, \mathrm{dd}, J=12.2,5.1 \mathrm{~Hz}), 3.89$
$(3 \mathrm{H}, \mathrm{s}), 2.99(1 \mathrm{H}, \mathrm{dd}, J=16.7,5.2 \mathrm{~Hz}), 2.29-2.20(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 171.5$ (C=O), 151.7 (C2), 142.0 (C1'), 132.9 (CH), $129.0(\mathrm{CH}), 128.4(\mathrm{CH}), 128.1(\mathrm{CH}), 122.5$ (C2'), 55.9 (CH), $54.4\left(\mathrm{CH}_{3}\right)$, $36.5\left(\mathrm{CH}_{2}\right)$. HRMS $\left(\mathrm{ESI}^{+}\right)$: calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{BrN}_{2} \mathrm{O}_{2}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 283.0077$ and 285.0056; Found: 283.0090 and 285.0073.

2-methoxy-6-(pyridin-3-yl)-5,6-dihydropyrimidin-4(3H)-one (7ae).

The title compound was prepared according to the above general procedure from 3-pyridine-carboxaldehyde $\mathbf{5 e}(47 \mu \mathrm{l}, 0.50 \mathrm{mmol}, 1.0$ equiv.) and O-methylisourea hemisulfate salt $1 \mathbf{1 a}(61.8 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv.). The product was isolated as a white solid ($34.7 \mathrm{mg}, 0.17 \mathrm{mmol}$, $34 \%) . R_{f}=0.15\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98 / 2\right)$. m.p. $134-136^{\circ} \mathrm{C}$. IR (neat) $v_{\max } 3062,2946,2841,2687$, $1716,1669,1268,899,803,720,710 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 8.67(1 \mathrm{H}, \mathrm{s}), 8.55(1 \mathrm{H}$, s), $8.19(1 \mathrm{H}, \mathrm{br}$ s), $7.73(1 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 7.31(1 \mathrm{H}, \mathrm{dd}, J=7.7,4.9 \mathrm{~Hz}), 4.81(1 \mathrm{H}, \mathrm{dd}, J=12.1$, $5.2 \mathrm{~Hz}), 3.87(3 \mathrm{H}, \mathrm{s}), 2.80(1 \mathrm{H}, \mathrm{dd}, J=16.6,5.1 \mathrm{~Hz}), 2.43(1 \mathrm{H}, \mathrm{dd}, J=16.5,12.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 170.5(\mathrm{C}=\mathrm{O}), 151.8(\mathrm{C} 2), 148.8(\mathrm{CH}), 148.3(\mathrm{CH}), 138.3(\mathrm{C} \mathrm{Ar}), 134.1(\mathrm{CH})$, $123.7(\mathrm{CH}), 54.5\left(\mathrm{CH}_{3}\right), 54.0(\mathrm{CH}), 36.5\left(\mathrm{CH}_{2}\right)$. HRMS $\left(\mathrm{ESI}^{+}\right)$: calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{2}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$: 206.0924; Found: 206.0928.

tert-butyl 3-(2-methoxy-5,6-dihydropyrimidin-4-one-6-yl)-indole-1-carboxylate (7ag)
The title compound was prepared according to the above general procedure from tert-butyl 3-formyl-indole-1-carboxylate $\mathbf{5 g}(122.8 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv.) and O-methylisourea hemisulfate salt $\mathbf{1 a}(61.8 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv.). The product was purified by column chromatography on silica gel (EtOAc/Petroleum ether 30/70 with $5 \% \mathrm{NEt}_{3}$) and isolated as colorless oil ($107.0 \mathrm{mg}, 0.310 \mathrm{mmol}, 62 \%$), displaying a $88 / 12$ mixture of $\Delta^{1,2}$ (majo) and $\Delta^{2,3}$ (mino) isomers by ${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3} . R_{f}=0.13$ ($\mathrm{EtOAc} / \mathrm{PE} 30 / 70$ with $5 \% \mathrm{NEt}_{3}$). IR (neat) $v_{\text {max }} 3200,2977,1725$, $1678,1451,1370,1254,1222,1154,1081,745 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 8.13(1 \mathrm{H}$ majo and mino, $\mathrm{d}, J=8.2 \mathrm{~Hz}$), $7.69(1 \mathrm{H}$ majo, br s), $7.63(1 \mathrm{H}$ majo, $\mathrm{d}, J=7.8 \mathrm{~Hz}$), $7.59-7.53(1 \mathrm{H}$ majo
and 2 H mino, m), 7.40-7.22 (2 H majo and mino, m), 5.71 (1 H mino, br s), $5.04(1 \mathrm{H}$ majo an mino, dd, $J=10.2,5.6 \mathrm{~Hz}$), 3.96 (3 H mino, s), 3.85 (3 H majo, s), 2.96-2.87 (2 H mino, m), 2.91 (1 H , majo, dd, $J=16.6,5.4 \mathrm{~Hz}$), $2.68(1 \mathrm{H}$, majo, dd, $J=16.7,10.2 \mathrm{~Hz}$), $1.69(9 \mathrm{H}$, mino, s), $1.67(9 \mathrm{H}$, majo, s). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) majo isomer only visible $\delta_{\mathrm{C}} 171.0$ ($\mathrm{C}=\mathrm{O}$), 151.3 (C C 2), 149.9

 $\left(\mathrm{CH}_{2} \mathrm{C} 5\right)$, $28.3\left(\mathrm{OC}\left(\mathrm{CH}_{3}\right)_{3}\right)$. HRMS $\left(\mathrm{ESI}^{+}\right)$: calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{4}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 344.1605$; Found: 344.1616.

2-methoxy-6-phenethyl-5,6-dihydropyrimidin-4-one (7ah).

The title compound was prepared according to the above general procedure from hydrocinnamaldehyde $\mathbf{5 h}(66 \mu \mathrm{l}, 0.50 \mathrm{mmol}, 1.0$ equiv.) and O-methylisourea hemisulfate salt $\mathbf{1 a}$ ($61.8 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv.). The product was isolated as a white solid ($94.2 \mathrm{mg}, 0.405 \mathrm{mmol}$, 81%), displaying a $84 / 16$ mixture of $\Delta^{1,2}$ (majo) and $\Delta^{2,3}$ (mino) isomers by ${ }^{1} \mathrm{H}$ NMR in CDCl_{3}. $R_{f}=0.17\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98 / 2\right)$. m.p. $101.5^{\circ} \mathrm{C}$. IR (neat) $v_{\max } 3175,3118,3025,2945,1713,1682$, 1484, 1451, 1257, 1246, $694 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 8.73$ (1 H majo, br s), 7.32-7.21 (5 H majo and mino, m), $5.92(1 \mathrm{H}$ mino, br s), $3.87(3 \mathrm{H}$ majo and mino, m$), 3.57(1 \mathrm{H}$ majo and mino, m), 2.85-2.21 (4 H majo and mino, m), 1.94-1.80 (2 H majo and mino, m). ${ }^{13} \mathrm{C}$ NMR (75 MHz ; $\left.\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 179.0$ ($\mathrm{C}=\mathrm{O}$ mino), 172.7 ($\mathrm{C}=\mathrm{O}$ majo), 164.8 (C 2 mino), 150.2 (C 2 majo), 141.7 (C Ar majo), 140.3 (C Ar mino), 128.6 (CH mino), 128.4 (CH majo), 128.3 (CH majo), $128.0(\mathrm{CH}$ mino), $126.4\left(\mathrm{CH}\right.$ mino), $125.8(\mathrm{CH}$ mino $), 54.8\left(\mathrm{CH}_{3}\right.$ mino $), 53.8\left(\mathrm{CH}_{3}\right.$ majo $), 51.3(\mathrm{CH}$ majo), 48.7 (CH mino), $37.8\left(\mathrm{CH}_{2}\right.$ majo $)$, $36.1\left(\mathrm{CH}_{2}\right.$ mino $), 36.0\left(\mathrm{CH}_{2}\right.$ mino $), 35.4\left(\mathrm{CH}_{2}\right.$, majo $), 31.9\left(\mathrm{CH}_{2}\right.$ majo $)$, $31.3\left(\mathrm{CH}_{2}\right.$ mino $) . \mathrm{HRMS}\left(\mathrm{ESI}^{+}\right)$: calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$: 233.1285; Found: 233.1286.

6-isobutyl-2-methoxy-5,6-dihydropyrimidin-4-one (7ai).
The title compound was prepared according to the above general procedure from isovaleraldehyde $97 \% 5 \mathbf{i}(56 \mu \mathrm{l}, 0.50 \mathrm{mmol}, 1.0$ equiv.) and O-methylisourea hemisulfate salt $1 \mathbf{1 a}(61.8 \mathrm{mg}, 0.50 \mathrm{mmol}$, 1.0 equiv.). The product was isolated as a white solid ($68.8 \mathrm{mg}, 0.375 \mathrm{mmol}, 75 \%$), displaying a $72 / 28$ mixture of $\Delta^{1,2}$ (majo) and $\Delta^{2,3}$ (mino) isomers by ${ }^{1} \mathrm{H} \mathrm{NMR}$ in $\mathrm{CDCl}_{3} . R_{f}=0.18$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98 / 2\right)$. m.p. $50-52^{\circ} \mathrm{C}$. IR (neat) $\nu_{\max } 3195,3115,2951,2920,2869,1712,1680$, 1471, 1245, $908 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.76(1 \mathrm{H}$ majo, br s), 5.43 (1 H mino, br s), $3.88(3 \mathrm{H}$ mino, s), $3.76(3 \mathrm{H}$ majo, s), $3.70-3.59(1 \mathrm{H}$ majo and mino, m$), 2.62(1 \mathrm{H}$ mino, dd, $J=15.5$, 5.4 Hz), $2.50(1 \mathrm{H}$ majo, dd, $J=16.6,5.4 \mathrm{~Hz}$), $2.30(1 \mathrm{H}$ mino, dd, $J=15.5,9.8 \mathrm{~Hz}), 2.17$ (1 H majo, $\mathrm{dd}, J=16.6,9.5 \mathrm{~Hz}$), 1.86-1.22 (3 H majo and mino, m), 0.94-0.91 (6 H majo and mino, m). ${ }^{13} \mathrm{C}$ NMR (75 MHz; CDCl_{3}) $\delta_{\mathrm{C}} 179.2(\mathrm{C}=\mathrm{O}$ mino), 172.6 ($\mathrm{C}=\mathrm{O}$ majo), 164.8 (C 2 mino), 150.0 (C 2 majo), 54.9 $\left(\mathrm{CH}_{3}\right.$ mino $), 53.9\left(\mathrm{CH}_{3}\right.$ majo $), 50.3(\mathrm{CH}$ majo $), 47.5(\mathrm{CH}$ mino $), 45.4\left(\mathrm{CH}_{2}\right.$ majo $), 43.9\left(\mathrm{CH}_{2}\right.$ mino $)$, $36.7\left(\mathrm{CH}_{2}\right.$ mino $), 35.8\left(\mathrm{CH}_{2}\right.$ majo $), 24.6(\mathrm{CH}$ majo $), 24.3(\mathrm{CH}$ mino $), 22.7\left(\mathrm{CH}_{3}\right.$ majo $), 22.6\left(\mathrm{CH}_{3}\right.$ majo), $22.5\left(\mathrm{CH}_{3}\right.$ mino $), 22.4\left(\mathrm{CH}_{3}\right.$ mino $)$. HRMS $\left(\mathrm{ESI}^{+}\right)$: calcd for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$: 185.1285; Found: 185.1284.

6-isopropyl-2-methoxy-5,6-dihydropyrimidin-4-one (7aj).
The title compound was prepared according to the above general procedure from isobutyraldehyde $98 \% \mathbf{5 j}$ ($47 \mu \mathrm{l}, 0.50 \mathrm{mmol}, 1.0$ equiv.) and O-methylisourea hemisulfate salt 1a ($61.8 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv.). The product was isolated as a white solid ($76.4 \mathrm{mg}, 0.450 \mathrm{mmol}$, 90%), displaying a $72 / 28$ mixture of $\Delta^{1,2}$ (majo) and $\Delta^{2,3}$ (mino) isomers by ${ }^{1} \mathrm{H}$ NMR in CDCl_{3}. $R_{f}=0.13\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98 / 2\right)$. m.p. $55-57{ }^{\circ} \mathrm{C}$. IR (neat) $v_{\max } 3196,3114,2944,2912,2895,2869$, $2851,1714,1675,1484,1472,1256,1044,904 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.58(1 \mathrm{H}$ majo, br s), $5.40(1 \mathrm{H}$ mino, br s), $3.89(3 \mathrm{H}$ mino, s), $3.77(3 \mathrm{H}$ majo, s), 3.44-3.29 (1 H majo and mino, $\mathrm{m}), 2.58(1 \mathrm{H}$ mino, dd, $J=15.6,5.7 \mathrm{~Hz}), 2.45(1 \mathrm{H}$ majo, dd, $J=16.6,5.4 \mathrm{~Hz}), 2.40(1 \mathrm{H}$ mino, dd, $J=15.8,7.8 \mathrm{~Hz}), 2.22(1 \mathrm{H}$ majo, dd, $J=16.6,11.3 \mathrm{~Hz}), 1.84-1.72(1 \mathrm{H}$ majo and mino, m), $0.97(3 \mathrm{H}$, majo and mino, d, $J=6.8 \mathrm{~Hz}$), $0.94(3 \mathrm{H}$, majo and mino, $\mathrm{d}, J=6.7 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$
$\delta_{\mathrm{C}} 179.5$ ($\mathrm{C}=\mathrm{O}$ mino), 173.1 ($\mathrm{C}=\mathrm{O}$ majo), 165.1 (C 2 mino), 149.9 (C 2 majo), 57.7 (CH C 6 majo), $55.0\left(\mathrm{OCH}_{3}\right.$ mino $), 54.8(\mathrm{CHC6}$ mino $)$, $53.8\left(\mathrm{OCH}_{3}\right.$ majo $), 33.4\left(\mathrm{CH}_{2}\right.$ mino $), 33.3\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right) 2\right.$ majo $)$, $32.6\left(\mathrm{CH}_{2}\right.$ majo $), 32.0\left(\underline{\mathrm{CH}}\left(\mathrm{CH}_{3}\right) 2\right.$ mino $)$, $18.62\left(\mathrm{CH}_{3}\right.$ majo $), 18.56\left(\mathrm{CH}_{3}\right.$ majo $), 18.1\left(\mathrm{CH}_{3}\right.$ mino $), 17.9$ $\left(\mathrm{CH}_{3}\right.$ mino $)$. $\mathrm{HRMS}\left(\mathrm{ESI}^{+}\right)$: calcd for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{2}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$: 171.1128; Found: 171.1126.

6-cyclohexyl-2-methoxy-5,6-dihydropyrimidin-4-one (7ak).
The title compound was prepared according to the above general procedure from cyclohexanecarboxaldehyde $\mathbf{5 k}$ ($62 \mu \mathrm{l}, 0.50 \mathrm{mmol}, 1.0$ equiv.) and O-methylisourea hemisulfate salt 1a ($61.8 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv.). The product was isolated as a white solid (92.3 mg , $0.440 \mathrm{mmol}, 88 \%$), displaying a $75 / 25$ mixture of $\Delta^{1,2}$ (majo) and $\Delta^{2,3}$ (mino) isomers by ${ }^{1} \mathrm{H}$ NMR in $\mathrm{CDCl}_{3} . R_{f}=0.14\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98 / 2\right)$. m.p. $119^{\circ} \mathrm{C}$. IR (neat) $v_{\max } 3202,3101,2926,2850,1712$, 1675, 1480, 1266, 1251, $702 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 8.71(1 \mathrm{H}$ majo, br s), $6.05(1 \mathrm{H}$ mino, br s), $3.82(3 \mathrm{H}$ mino, s), 3.73 (3 H majo, s), 3.44-3.24 (1 H majo and mino, m), 2.58-2.14 (2 H majo and mino, m), 1.92-1.56 (5 H majo and mino, m), 1.48-1.32 (1 H majo and mino, m), 1.30-0.88 (5 H majo and mino, m). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 179.5(\mathrm{C}=\mathrm{O}$ mino), $173.2(\mathrm{C}=\mathrm{O}$ majo), 165.0 (C 2 mino), 149.8 (C 2 majo), $57.0(\mathrm{CH}$ majo, C 6$), 54.9\left(\mathrm{CH}_{3}\right.$ mino $), 54.0(\mathrm{CH}$ mino, C 6$), 53.8\left(\mathrm{CH}_{3}\right.$ majo), 43.1 (CH majo, Cl^{\prime}), $41.7\left(\mathrm{CH}\right.$ mino, $\left.\mathrm{C} 1{ }^{\prime}\right)$, $33.4\left(\mathrm{CH}_{2}\right.$ mino $), 32.7\left(\mathrm{CH}_{2}\right.$ majo), $29.7\left(\mathrm{CH}_{2}\right.$ mino $)$, $29.1\left(\mathrm{CH}_{2}\right.$ majo $), 28.9\left(\mathrm{CH}_{2}\right.$ majo $), 28.6\left(\mathrm{CH}_{2}\right.$ mino $), 28.3\left(\mathrm{CH}_{2}\right.$ mino $), 26.5\left(\mathrm{CH}_{2}\right.$ majo $), 26.2$ $\left(\mathrm{CH}_{2}\right.$ majo), $25.9\left(\mathrm{CH}_{2}\right.$ mino). HRMS (ESI $\left.{ }^{+}\right)$: calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$: 211.1441; Found: 211.1444.

2-methoxy-6-(2-((tert-butoxycarbonyl)amino)ethyl)-5,6-dihydropyrimidin-4-one (7al).
The title compound was prepared according to the above general procedure from 3-((tert-butoxycarbonyl)amino)propionaldehyde $\quad \mathbf{5 l} \quad(87.0 \mathrm{mg}, \quad 0.50 \mathrm{mmol}, \quad 1.0$ equiv.) and O-methylisourea hemisulfate salt $\mathbf{1 a}(61.8 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv.). The product was isolated as a colorless oil ($61.2 \mathrm{mg}, 0.226 \mathrm{mmol}, 45 \%$), displaying a $72 / 28$ mixture of $\Delta^{1,2}$ (majo) and $\Delta^{2,3}$ (mino) isomers by ${ }^{1} \mathrm{H}$ NMR in CDCl_{3}. $R_{f}=0.10\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98 / 2\right)$. IR (neat) $v_{\max } 3318,2977,2933$, 1677, 1526, 1366, 1247, 1166, $728 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 8.16$ (1 H majo, br s), 7.16
(1 H mino, br s), $5.69(1 \mathrm{H}$ majo, br s$), 4.88(1 \mathrm{H}$ mino, br s$), 3.86(3 \mathrm{H}$ mino, s$), 3.76(3 \mathrm{H}$ majo, s$)$, 3.67-3.57 (1 H majo and mino, m), 3.51-3.00 (2 H majo and mino, m), $2.72(1 \mathrm{H}$ mino, $\mathrm{dd}, J=15.6$, $7.0 \mathrm{~Hz}), 2.48(1 \mathrm{H}$ majo, dd, $J=16.6,5.0 \mathrm{~Hz}), 2.32(1 \mathrm{H}$ mino, dd, $J=15.6,4.3 \mathrm{~Hz}), 2.20(1 \mathrm{H}$ majo, $\mathrm{dd}, J=16.6,11.6 \mathrm{~Hz}$), 1.79-1.58 (2 H majo and mino, m), 1.42 (9 H majo and mino, m) ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 178.8(\mathrm{C}=\mathrm{O}$ mino), $171.8(\mathrm{C}=\mathrm{O}$ majo), $164.5(\mathrm{C} 2$ mino $), 156.1(\mathrm{~N}(\mathrm{C}=\mathrm{O}) \mathrm{O}$ majo and mino), 150.5 (C 2 majo), 80.1 ($\mathrm{C}^{\prime}{ }^{\prime}$ mino), 78.9 (C^{\prime} ' majo), $54.8\left(\mathrm{OCH}_{3}\right.$ mino), $54.0\left(\mathrm{OCH}_{3}\right.$ mino), $51.7\left(\mathrm{CH}\right.$ majo), $50.7(\mathrm{CH}$ mino $), 45.8\left(\mathrm{NCH}_{2}\right.$ majo and mino $), 36.5\left(\mathrm{CH}_{2} \mathrm{C} 5\right.$ mino $), 35.9\left(\mathrm{CH}_{2}\right.$ C5 majo), $35.7\left(\mathrm{CH}_{2} \mathrm{C1}\right.$ 'majo and mino), $28.5\left(\left(\mathrm{CH}_{3}\right)_{3}\right.$ majo and mino). HRMS (ESI $\left.{ }^{+}\right)$: calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{4}\left[(\mathrm{M}+\mathrm{H})^{+}\right]:$272.1605; Found: 272.1602.

6-((2S,5R,6R)-5,6-dimethoxy-5,6-dimethyl-1,4-dioxan-2-yl)-2-methoxy-5,6-dihydropyrimidin-4(3H)-one (7am).
Meldrum's acid sodium enolate $4 \mathbf{N a}^{+}(166.1 \mathrm{mg}, 1.0 \mathrm{mmol}$, 1.0 equiv.), O-methylisourea hemisulfate salt $\mathbf{1 a}$ ($123.0 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv.) and Ley's aldehyde ${ }^{5} \mathbf{5 m}(204.3 \mathrm{mg}, 1.0 \mathrm{mmol}$, 1.0 equiv.) under nitrogen atmosphere were dissolved in acetonitrile (3.6 mL) and water (0.4 mL) and stirred at $40^{\circ} \mathrm{C}$ for 24 hours. The crude reaction mixture was filtrated through fritted glass. The filtrate was evaporated under reduced pressure and the resulting mixture was purified twice by column chromatography on silica gel (EtOAc/Petroleum ether $70 / 30$ and then $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98 / 2$) and isolated as a white foam ($153.3 \mathrm{mg}, 0.51 \mathrm{mmol}, 51 \%$). $R_{f}=0.30$ (EtOAc/Petroleum ether 70/30). $R_{f}=0.07\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98 / 2\right)$. IR (neat) $v_{\max } 3250,2993$, 2950, 2920, 2840, 1681, 1715, 1250, 1118, 1034, $874 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 7.94(1 \mathrm{H}, \mathrm{br}$ s), $3.89-3.53(4 \mathrm{H}, \mathrm{m}), 3.70(3 \mathrm{H} \mathrm{s}), 3.27(3 \mathrm{H}, \mathrm{s}), 3.22(3 \mathrm{H}, \mathrm{s}), 2.69(1 \mathrm{H}, \mathrm{dd}, J=16.9,5.7 \mathrm{~Hz}), 2.48$ $(1 \mathrm{H}, \mathrm{dd}, J=16.9,8.2 \mathrm{~Hz}), 1.282(3 \mathrm{H}, \mathrm{m}), 1.280(3 \mathrm{H}, \mathrm{m}){ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 171.1$ $(\mathrm{C}=\mathrm{O}), 150.9(\mathrm{C}), 99.4(\mathrm{C}), 98.1(\mathrm{C}), 69.6(\mathrm{CH}), 62.5\left(\mathrm{CH}_{2}\right), 54.1\left(\mathrm{CH}_{3}\right), 53.8(\mathrm{CH}), 48.2\left(\mathrm{CH}_{3}\right)$, $48.1\left(\mathrm{CH}_{3}\right)$, $31.8\left(\mathrm{CH}_{2}\right)$, $17.9\left(\mathrm{CH}_{3}\right)$, $17.7\left(\mathrm{CH}_{3}\right)$. HRMS $\left(\mathrm{ESI}^{+}\right)$: calcd for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{6}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$: 303.1551; Found: 303.1554.

[^7]

5-(((amino(iminio)methyl)amino)(phenyl)methyl)-2,2-dimethyl-4-oxo-1,3-dioxin-6-olate (10).
The title compound was prepared according to the above general procedure from benzaldehyde $\mathbf{5 a}$ ($51 \mu \mathrm{l}, 0.50 \mathrm{mmol}, 1.0$ equiv.) and guanidine hydrochloride $\mathbf{1 d}$ ($47.9 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv.). The crude mixture was purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ $90 / 10$). The product was isolated as a white solid, ($105.5 \mathrm{mg}, 0.360 \mathrm{mmol}, 72 \%$). $R_{f}=0.36$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 90 / 10\right)$. m.p. $170-172{ }^{\circ} \mathrm{C}$. IR (neat) $v_{\max } 3339,3168,1620,1538,1400,1371,1259$, $1200 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz ; DMSO-d ${ }_{6}$) $\delta_{\mathrm{H}} 8.07(1 \mathrm{H}, \mathrm{dd}, J=8.7 \mathrm{~Hz}$), 7.39-7.13 ($7 \mathrm{H}, \mathrm{m}$), 6.83 $(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.58(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}), 1.48(6 \mathrm{H}, \mathrm{s}){ }^{13} \mathrm{C}$ NMR (75 MHz ; DMSO-d $)_{6} \delta_{\mathrm{C}} 164.9(\mathrm{C}=\mathrm{O})$, 156.2 (C guanidine), $142.9(\mathrm{Cq} \mathrm{Ar}), 127.7(2 \mathrm{CH}), 126.0(3 \mathrm{CH}), 100.1\left(\underline{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 75.9(\mathrm{C}), 51.4$ $(\mathrm{CH}-\mathrm{NH})$, $25.9\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right)}\right) \cdot \mathrm{HRMS}\left(\mathrm{ESI}^{+}\right)$: calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{4}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 292.1292$; Found: 292.1301.

III-2 Diastereoselective synthesis of pyrimidinones

Representative general procedure for the diastereoselective synthesis of pyrimidinones.

Meldrum's acid $\quad 4 \quad(72.1 \mathrm{mg}, \quad 0.50 \mathrm{mmol}, \quad 1.0$ equiv.) and (4R)-4-phenyl-oxazolidin-2ylidene amine ${ }^{6} \mathbf{1 2}$ ($81.2 \mathrm{mg}, 0.50 \mathrm{mmol}$, 1.0 equiv.) under nitrogen atmosphere were dissolved in acetonitrile (1.8 mL) and water $(0.2 \mathrm{~mL})$. The aldehyde $\mathbf{5}$ was then added and the mixture stirred at $40^{\circ} \mathrm{C}$ for 24 hours. The crude reaction mixture of four compounds was evaporated under reduced pressure and the resulting mixture purified by column chromatography on silica gel to afford product 13.

[^8]
(3R,5S)-3,5-diphenyl-2,3,5,6-tetrahydro oxazolo [3,2-a] pyrimidin-7-one (13a)
The title compound was prepared according to the above general procedure from benzaldehyde $\mathbf{5 a}$ ($51 \mu \mathrm{~L}, 0.50 \mathrm{mmol}, 1.0$ equiv.). The crude mixture (13a/14a/15a/16a in a 64/6/25/5 ratio, 100% conversion) was purified by column chromatography on silica gel ($\mathrm{AcOEt} / \mathrm{MeOH} 95 / 5$) and the product was isolated as a white solid ($81.5 \mathrm{mg}, 0.277 \mathrm{mmol}, 55 \%$). The data were in accordance with literature for the opposite enantiomer. ${ }^{6} R_{f}=0.25$ (AcOEt/MeOH 95/5). m.p. $90-91{ }^{\circ} \mathrm{C}$. $[\alpha]_{\mathrm{D}}{ }^{20}-103$ (c $0.50, \mathrm{CHCl}_{3}$). IR (neat) $v_{\max }, 3060,3033,2926,1668,1563,1444,751,697 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 7.42-7.36(6 \mathrm{H}, \mathrm{m}), 7.12-7.07(4 \mathrm{H}, \mathrm{m}), 4.86(1 \mathrm{H}$, app.t, $J=8.8 \mathrm{~Hz}), 4.66(1 \mathrm{H}$, dd, $J=8.6,5.8 \mathrm{~Hz}), 4.47(1 \mathrm{H}, \mathrm{dd}, J=9.0,5.8 \mathrm{~Hz}), 4.31(1 \mathrm{H}$, app.t, $J=7.2 \mathrm{~Hz}), 2.92(1 \mathrm{H}$, dd, $J=16.2,7.1 \mathrm{~Hz}), 2.74(1 \mathrm{H}, \mathrm{dd}, J=16.2,7.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 177.7(\mathrm{C}=\mathrm{O}), 167.9$ ($\mathrm{O}(\mathrm{C}=\mathrm{N}) \mathrm{N}), 137.1(\mathrm{C}), 135.5(\mathrm{C}), 129.9(\mathrm{CH}), 129.7(\mathrm{CH}), 129.5(\mathrm{CH}), 129.3(\mathrm{CH}), 127.3(\mathrm{CH})$, $126.9(\mathrm{CH}), 73.2\left(\mathrm{CH}_{2}\right), 60.8(\mathrm{CH}), 54.6(\mathrm{CH}), 37.8\left(\mathrm{CH}_{2}\right)$. HRMS (ESI $)$: calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}$ [(M+H) $\left.{ }^{+}\right]: 293.1285 ;$ Found: 293.1283.
(3R,7R)-3,7-diphenyl-2,3,6,7-tetrahydro oxazolo [3,2-a] pyrimidin-5-one (15a)

A second careful purification on column chromatography on silica gel of the other fractions (AcOEt/EP 30/70 to AcOEt 100\%) allowed the isolation of product 15a as a white amorphous solid ($25.0 \mathrm{mg}, 0.085 \mathrm{mmol}, 17 \%$). $R_{f}=0.4$ (AcOEt/EP 50/50). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 7.43-7.26$ $(11 \mathrm{H}, \mathrm{m}), 5.44(1 \mathrm{H}, \mathrm{dd}, J=8.2,3.5 \mathrm{~Hz}), 4.86(1 \mathrm{H}, \mathrm{dd}, J=13.7,4.8 \mathrm{~Hz}), 4.73(1 \mathrm{H}$, app. t., $J=8.5$ $\mathrm{Hz}), 4.44(1 \mathrm{H}, \mathrm{dd}, J=8.8,3.5 \mathrm{~Hz}), 2.80(1 \mathrm{H}, \mathrm{dd}, J=17.1,4.8 \mathrm{~Hz}), 2.47(1 \mathrm{H}, \mathrm{dd}, J=17.1,13.7 \mathrm{~Hz})$. ${ }^{13}$ C NMR ($75 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 167.9$ (C=O), 153.8 (C9), 142.5 (C), 138.5 (C), 129.3 (CH), 128.9 $(\mathrm{CH}), 128.8(\mathrm{CH}), 127.5(\mathrm{CH}), 126.4(\mathrm{CH}), 126.2(\mathrm{CH}), 72.6\left(\mathrm{CH}_{2}\right), 57.2(\mathrm{CH}), 56.5(\mathrm{CH}), 38.4$ $\left(\mathrm{CH}_{2}\right)$. HRMS (ESI $\left.{ }^{+}\right)$: calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}\left[(\mathrm{M}+\mathrm{H})^{+}\right]:$293.1285; Found: 293.1285.

(3R,5S)-3-(4-methoxyphenyl)-5-phenyl-2,3,5,6-tetrahydro oxazolo [3,2-a] pyrimidin-7-one (13b).
The title compound was prepared according to the above general procedure from p-anisaldehyde $\mathbf{5 b}$ ($61 \mu \mathrm{~L}, 0.50 \mathrm{mmol}, 1.0$ equiv.). The crude mixture ($\mathbf{1 3 b} \mathbf{/ 1 4 b} / \mathbf{1 5 b} / \mathbf{1 6 b}$ in a $61 / 7 / 26 / 6$ ratio, 88% conversion) was purified by column chromatography on silica gel ($\mathrm{AcOEt} / \mathrm{MeOH} 95 / 5$) and the product was isolated as a white solid ($84.0 \mathrm{mg}, 0.26 \mathrm{mmol}, 52 \%$). $R_{f}=0.15$ ($\mathrm{AcOEt} / \mathrm{MeOH} 95 / 5$). m.p. $170-172{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}-106\left(\mathrm{c} 0.50, \mathrm{CHCl}_{3}\right.$). IR (neat) $v_{\text {max }} 2920,2840,1683,1558,1513,1444$, $1248,1021,701 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 7.44-7.39(3 \mathrm{H}, \mathrm{m}), 7.15-7.10(2 \mathrm{H}, \mathrm{m}), 7.02-$ $6.98(2 \mathrm{H}, \mathrm{m}), 6.89-6.85(2 \mathrm{H}, \mathrm{m}), 4.84(1 \mathrm{H}$, app.t, $J=8.8 \mathrm{~Hz}), 4.64(1 \mathrm{H}, \mathrm{dd}, J=8.6,5.9 \mathrm{~Hz}), 4.45$ $(1 \mathrm{H}, \mathrm{dd}, J=8.9,5.9 \mathrm{~Hz}), 4.27(1 \mathrm{H}$, app.t, $J=7.2 \mathrm{~Hz}), 3.82(3 \mathrm{H}, \mathrm{s}), 2.90(1 \mathrm{H}, \mathrm{dd}, J=16.2,7.0 \mathrm{~Hz})$, $2.73(1 \mathrm{H}, \mathrm{dd}, J=16.2,7.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 178.0(\mathrm{C}=\mathrm{O}), 167.8(\mathrm{O}(\mathrm{C}=\mathrm{N}) \mathrm{N})$, $160.1(\mathrm{C}), 135.5(\mathrm{C}), 129.8(\mathrm{CH}), 129.7(\mathrm{CH}), 128.9(\mathrm{C}), 128.3(\mathrm{CH}), 127.3(\mathrm{CH}), 114.7(\mathrm{CH}), 73.2$ $\left(\mathrm{CH}_{2}\right)$, $60.7(\mathrm{CH})$, $55.5\left(\mathrm{CH}_{3}\right)$, $54.0(\mathrm{CH}), 37.8\left(\mathrm{CH}_{2}\right)$. HRMS $\left(\mathrm{ESI}^{+}\right)$: calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 323.1390$; Found: 323.1397.

(3R,5S)-3-phenyl-5-(4-trifluoromethylphenyl)-2,3,5,6-tetrahydro oxazolo [3,2-a] pyrimidin-7one (13c).

The title compound was prepared according to the above general procedure from 4-trifluoromethylbenzaldehyde $\mathbf{5 c} \quad(69 \quad \mu \mathrm{~L}, \quad 0.50 \mathrm{mmol}, \quad 1.0$ equiv.). The crude mixture ($\mathbf{1 3 c} / \mathbf{1 4 c} / \mathbf{1 5 c} / \mathbf{1 6 c}$ in a 62/8/22/8 ratio, 100% conversion) was evaporated under reduced pressure and purified twice by column chromatography on silica gel (EtOAc/MeOH 95/5 then EtOAc/MeOH 99/1). The product was isolated as a white solid ($83.0 \mathrm{mg}, 0.23 \mathrm{mmol}, 46 \%$). $R_{f}=0.23$ (AcOEt/MeOH 95/5). m.p. $167-169{ }^{\circ} \mathrm{C}$. $[\alpha]_{\mathrm{D}}{ }^{20}-103$ (c $0.50, \mathrm{CHCl}_{3}$). IR (neat) $v_{\max } 2927,1678$, 1577, 1568, 1460, 1450, 1324, 1164, 1111, 1068, 1017, $700 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \mathrm{CDCl}_{3}$)
$\delta_{\mathrm{H}} 7.65-7.62(2 \mathrm{H}, \mathrm{m}), 7.43-7.41(3 \mathrm{H}, \mathrm{m}), 7.26-7.23(2 \mathrm{H}, \mathrm{m}), 7.13-7.10(2 \mathrm{H}, \mathrm{m}), 4.90(1 \mathrm{H}$, app.t, $J=8.8 \mathrm{~Hz}), 4.67(1 \mathrm{H}, \mathrm{dd}, J=8.5,5.9 \mathrm{~Hz}), 4.50(1 \mathrm{H}, \mathrm{dd}, J=9.0,5.9 \mathrm{~Hz}), 4.39(1 \mathrm{H}$, app.t, $J=7.1$ $\mathrm{Hz}), 2.94(1 \mathrm{H}, \mathrm{dd}, J=16.2,7.2 \mathrm{~Hz}), 2.70(1 \mathrm{H}, \mathrm{dd}, J=16.2,7.2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 177.0(\mathrm{C}=\mathrm{O}), 167.9(\mathrm{O}(\mathrm{C}=\mathrm{N}) \mathrm{N}), 141.2(\mathrm{C}), 135.1(\mathrm{C}), 131.5(\mathrm{C}, \mathrm{q}, J=32.8 \mathrm{~Hz}), 130.1(\mathrm{CH})$, $129.9(\mathrm{CH}), 127.4(\mathrm{CH}), 127.2(\mathrm{CH}), 126.56(\mathrm{CH}, \mathrm{q}, J=3.7 \mathrm{~Hz}), 123.7\left(\mathrm{CF}_{3}, \mathrm{q}, J=272.5 \mathrm{~Hz}\right), 73.3$ $\left(\mathrm{CH}_{2}\right), 60.9(\mathrm{CH}), 54.0(\mathrm{CH}), 37.5\left(\mathrm{CH}_{2}\right)$. HRMS $\left(\mathrm{ESI}^{+}\right)$: calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$: 361.1158; Found: 361.1155

($3 R, 5 R$)-5-butyl-3-phenyl-2,3,5,6-tetrahydro oxazolo [3,2-a] pyrimidin-7-one (13n).
The title compound was prepared according to the above general procedure from valeraldehyde $\mathbf{5 n}$ ($54 \mu \mathrm{~L}, 0.50 \mathrm{mmol}, 1.0$ equiv.). The crude mixture ($\mathbf{1 3 n} / \mathbf{1 4 n} / \mathbf{1 5 n} / \mathbf{1 6 n}$ in a $69 / 5 / 17 / 9$ ratio, 100% conversion) was purified by column chromatography on silica gel (AcOEt/MeOH 98/2 to $\mathrm{AcOEt} / \mathrm{MeOH} 95 / 5$). The product was isolated as transparent oil ($71.9 \mathrm{mg}, 0.264 \mathrm{mmol}, 53 \%$). The data were in accordance with literature for the opposite enantiomer. ${ }^{6} R_{f}=0.13$ ($\mathrm{AcOEt} / \mathrm{MeOH} 95 / 5$). $[\alpha]_{\mathrm{D}}{ }^{20}-119\left(\mathrm{c} 0.495, \mathrm{CHCl}_{3}\right)$. IR (neat) $v_{\text {max }}, 3031,2953,2930,2861,2248,1666,1583,1477,917$, $723,700 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 7.49-7.43(3 \mathrm{H}, \mathrm{m}), 7.32-7.29(2 \mathrm{H}, \mathrm{m}), 5.02(1 \mathrm{H}, \mathrm{dd}$, $J=8.7,6.1 \mathrm{~Hz}), 4.88(1 \mathrm{H}$, app. t, $J=8.8 \mathrm{~Hz}), 4.40(1 \mathrm{H}, \mathrm{dd}, J=8.9,6.1 \mathrm{~Hz}), 3.36(1 \mathrm{H}, \mathrm{m}), 2.65(1 \mathrm{H}$, dd, $J=15.9,6.8 \mathrm{~Hz}), 2.48(1 \mathrm{H}, \mathrm{dd}, J=15.9,5.5 \mathrm{~Hz}), 1.67-1.45(2 \mathrm{H}, \mathrm{m}), 1.32-1.22(4 \mathrm{H}, \mathrm{m}), 0.84$ $(3 \mathrm{H}, \mathrm{t}, J=6.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 178.3(\mathrm{C}=\mathrm{O}), 167.5(\mathrm{O}(\mathrm{C}=\mathrm{N}) \mathrm{N}), 136.0(\mathrm{C})$, $129.90(\mathrm{CH}), 129.88(\mathrm{CH}), 126.9(\mathrm{CH}), 73.4\left(\mathrm{CH}_{2}\right), 60.8(\mathrm{CH}), 49.6(\mathrm{CH}), 34.6\left(\mathrm{CH}_{2}\right), 31.0\left(\mathrm{CH}_{2}\right)$, $26.7\left(\mathrm{CH}_{2}\right)$, $22.5\left(\mathrm{CH}_{2}\right)$, $13.9\left(\mathrm{CH}_{3}\right)$. HRMS $\left(\mathrm{ESI}^{+}\right)$: calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 273.1598$; Found: 273.1599.

III-3 Chemical Transformations

6-phenyldihydropyrimidine-2,4-dione. (17).
The title compound was prepared by heating 7aa ($40.8 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.) in a mixture of methanol $(0.05 \mathrm{~mL})$ and $\mathrm{HCl}(2 \mathrm{M})\left(0.6 \mathrm{~mL}, 0.12 \mathrm{mmol}, 0.6\right.$ equiv.) at $60^{\circ} \mathrm{C}$ for 1.5 hours. The crude material was treated with saturated aqueous NaHCO_{3} and extracted with dichloromethane. The organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and after filtration evaporated under reduced pressure to afford 17 as a white solid ($35.0 \mathrm{mg}, 0.184 \mathrm{mmol}, 92 \%$) m.p. $217^{\circ} \mathrm{C}$ (Pentane). The data were in accordance with literature. ${ }^{7}$ See below for analysis.

$\overrightarrow{\mathrm{HCOOH}}(0.11 \mathrm{M})$ Refluxing 15 h

crude
(6S)-6-phenyldihydropyrimidine-2,4-dione (17).
For determination of relative configuration. 13a ($57.5 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.) was stirred in ethanol (2.0 mL) with Pd/C $10 \% \mathrm{w} / \mathrm{w}(16.0 \mathrm{mg}, 0.015 \mathrm{mmol}, 0.075$ equiv.) at room temperature for 6 hours H_{2} atmosphere. The crude mixture was filtrated on celite with dichloromethane and evaporated under reduced pressure. ${ }^{6}$ The resulting off-white solid was dissolved in formic acid (1.8 mL) and heated to reflux ($\sim 110^{\circ} \mathrm{C}$) for 15 hours. ${ }^{8}$ The crude mixture was filtrated on celite and evaporated under reduced pressure (Caution: evaporate under fume hood). The resulting solid was washed with diethyl ether to give the titled compound as a white solid ($31.5 \mathrm{mg}, 0.165 \mathrm{mmol}, 83 \%$, ee $>99 \%$). The data were in accordance with literature. ${ }^{7}$ m.p. $217-219{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right) .[\alpha]_{\mathrm{D}}{ }^{20}$ was not measurable due to solubility issues. ${ }^{1} \mathrm{H}$ NMR (300 MHz ; DMSO- d_{6}) $\delta_{\mathrm{H}} 10.17(1 \mathrm{H}, \mathrm{s}), 8.0(1 \mathrm{H}, \mathrm{s}), 7.40-7.27(5 \mathrm{H}, \mathrm{m})$, $4.67(1 \mathrm{H}, \mathrm{m}), 2.84(1 \mathrm{H}, \mathrm{dd}, J=16.4,5.8 \mathrm{~Hz}), 2.61(1 \mathrm{H}, \mathrm{dd}, J=16.4,6.8 \mathrm{~Hz})$. HPLC analysis: chiral

[^9]column IC (Heptane/i-PrOH: 70/30, flow rate $1 \mathrm{~mL} / \mathrm{min}$, UV $210 \mathrm{~nm}, \mathrm{~T} \sim 25^{\circ} \mathrm{C}, \mathrm{t}=18.2 \mathrm{~min}$ for minor enantiomer $R ; \mathrm{t}=22.7 \mathrm{~min}$ for major enantiomer $S) .{ }^{9}$

1) $\mathrm{HCOOH}(0.09 \mathrm{M})$ Refluxing 18h
2) MsOH 1.0 eq

Toluene (0.09M) Refluxing 6 h

(6R)-6-phenyldihydropyrimidine-2,4-dione (17).
$15 \mathbf{a}$ ($19.5 \mathrm{mg}, 0.067 \mathrm{mmol}, 1.0$ equiv.) was stirred in ethanol (0.75 mL) with $\mathrm{Pd} / \mathrm{C} 10 \% \mathrm{w} / \mathrm{w}(5.5 \mathrm{mg}$, $0.005 \mathrm{mmol}, 0.075$ equiv.) at room temperature for 18 hours under H_{2} atmosphere. The crude mixture was filtrated on celite with dichloromethane and evaporated under reduced pressure. ${ }^{6}$ The resulting off-white solid was dissolved in formic acid $(0.75 \mathrm{~mL})$ and heated to reflux $\left(\sim 110^{\circ} \mathrm{C}\right)$ for 18 hours. ${ }^{8}$ The crude mixture was filtrated on celite and evaporated under reduced pressure (Caution: evaporate under fume hood). As the crude mixture showed no changes it was diluted in toluene, methane sulfonic acid ($46 \mu \mathrm{l}, 0.067 \mathrm{mmol}, 1.0$ equiv) was added and the medium was heated to reflux for 6 hours. ${ }^{10}$ The crude mixture was evaporated under reduced pressure (Caution: evaporate under fume hood). The resulting solid was washed with diethyl ether to give the titled compound as a white solid ($4.7 \mathrm{mg}, 0.025 \mathrm{mmol}, 37 \%$, ee $>99 \%$). The data were in accordance with literature. ${ }^{7}$ See before for analysis. HPLC analysis: chiral column IC (Heptane $/ i-\operatorname{PrOH}: 70 / 30$, flow rate $1 \mathrm{~mL} / \mathrm{min}$, UV $210 \mathrm{~nm}, \mathrm{~T} \sim 20^{\circ} \mathrm{C}, \mathrm{t}=19.7 \mathrm{~min}$ for major enantiomer $R ; \mathrm{t}=23.9 \mathrm{~min}$ for minor enantiomer $\left.S\right) .{ }^{9}$

tert-butyl 2-methoxy-4-oxo-6-phenyl-5,6-dihydropyrimidine-1-carboxylate (18).
The title compound was prepared by mixing $7 \mathbf{7 a a}(102.2 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv.), di-tert-butyl dicarbonate ($132.4 \mathrm{mg}, 0.60 \mathrm{mmol}, 1.2$ equiv.) and DMAP ($2.0 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.04$ equiv.) in acetonitrile $(2.0 \mathrm{~mL})$ at room temperature for 15 h . The solvent was evaporated under reduced pressure and the crude mixture purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to

[^10]$\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 99 / 1$) The product was isolated as a yellow solid, ($152.6 \mathrm{mg}, 0.50 \mathrm{mmol}, 99 \%$). $R_{f}=0.16\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 99 / 1\right)$. m.p. $136-137^{\circ} \mathrm{C}$. IR (neat) $v_{\max } 2979,1750,1700,1551,1131$, $1098 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 7.33-7.18(5 \mathrm{H}, \mathrm{m}), 5.47(1 \mathrm{H}, \mathrm{dd}, J=7.3,2.7 \mathrm{~Hz}$), 4.05 $(3 \mathrm{H}, \mathrm{s}), 3.04(1 \mathrm{H}, \mathrm{dd}, J=15.8,7.3 \mathrm{~Hz}), 2.86(1 \mathrm{H}, \mathrm{dd}, J=15.8,2.8 \mathrm{~Hz}), 1.38(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 176.0(\mathrm{C}), 161.0(\mathrm{C}), 149.9(\mathrm{C}), 138.7(\mathrm{C}), 128.9(\mathrm{CH}), 128.2(\mathrm{CH}), 125.4$ $(\mathrm{CH}), 84.5(\mathrm{C}), 56.6(\mathrm{CH}), 56.3\left(\mathrm{OCH}_{3}\right), 38.4\left(\mathrm{CH}_{2}\right), 27.6\left(\mathrm{CH}_{3}\right)$. HRMS (ESI)) calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{4}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 305.1496$; Found: 305.1503.

tert-butyl 2-methylthio-4-oxo-6-phenyl-5,6-dihydropyrimidine-1-carboxylate (19).
The title compound was prepared by mixing 7ba ($99.0 \mathrm{mg}, 0.45 \mathrm{mmol}, 1.0$ equiv.), di-tert-butyl dicarbonate ($119 \mathrm{mg}, 0.54 \mathrm{mmol}, 1.2$ equiv.) and DMAP ($2.3 \mathrm{mg}, 0.016 \mathrm{mmol}, 0.04$ equiv.) in acetonitrile (2.0 mL) at room temperature for 7 h . The solvent was evaporated under reduced pressure and the crude mixture purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 99 / 1$) The product was isolated as a yellow oil, ($122.7 \mathrm{mg}, 0.38 \mathrm{mmol}, 85 \%$). $R_{f}=0.70\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 99 / 1\right)$. IR (neat) $v_{\max }$ 2980, 2928, 1732, 1695, 1490, 1302, 1274, 1250, 1133, 1105, $698 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 7.32-7.29(3 \mathrm{H}, \mathrm{m}), 7.13-7.10(2 \mathrm{H}, \mathrm{m}), 5.57$ $(1 \mathrm{H}, \mathrm{dd}, J=7.7,2.1 \mathrm{~Hz}), 3.03(1 \mathrm{H}, \mathrm{dd}, J=15.0,7.6 \mathrm{~Hz}), 2.79(1 \mathrm{H}, \mathrm{dd}, J=15.0,2.1 \mathrm{~Hz}), 2.46(3 \mathrm{H}$, s), $1.36(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 172.0(\mathrm{C}), 171.9$ (C), 151.1 (C), 138.9 (C), 129.1 $(\mathrm{CH}), 128.3(\mathrm{CH}), 125.1(\mathrm{CH}), 85.8(\mathrm{C}), 57.9(\mathrm{CH}), 37.7\left(\mathrm{CH}_{2}\right), 27.7\left(\mathrm{CH}_{3}\right), 16.7\left(\mathrm{SCH}_{3}\right)$. HRMS (ESI^{+}): calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}\left[(\mathrm{M}+\mathrm{H})^{+}\right]$: 321.1267; Found: 321.1269.

tert-butyl 2-amino-4-oxo-6-phenyl-5,6-dihydropyrimidine-1-carboxylate (20).
The title compound was prepared by mixing either $\mathbf{7 a a}(61.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.) or $\mathbf{7 b a}$ ($64.0 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.) with ammonium chloride ($5.4 \mathrm{mg}, 0.10 \mathrm{mmol}, 0.5$ equiv.) in THF $(1.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ in a sealed vessel. Then, gaseous ammonia was bubbled through for 30 min . After that time, the medium was heated at $70^{\circ} \mathrm{C}$ for 7 h . Then, the solvent was evaporated under reduced pressure and the crude mixture purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to
$\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95 / 5\right)$. The product was isolated as a white solid ($47.1 \mathrm{mg}, 0.16 \mathrm{mmol}, 81 \%$ from 7 7aa and $52.1 \mathrm{mg}, 0.18 \mathrm{mmol}, 90 \%$ from 7ba). $R_{f}=0.36\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95 / 5\right)$. m.p. $248-249{ }^{\circ} \mathrm{C}$. IR (neat) $v_{\max } 3375,2981,2927,1724,1672,1635,1514,1369,1302,1245,1146,1111,757 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 8.77(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.34-7.17(5 \mathrm{H}, \mathrm{m}), 5.51(1 \mathrm{H}, \mathrm{dd}, J=7.5,1.8 \mathrm{~Hz})$, $3.05(1 \mathrm{H}, \mathrm{dd}, J=15.7,7.5 \mathrm{~Hz}), 2.74(1 \mathrm{H}, \mathrm{dd}, J=15.7,1.9 \mathrm{~Hz}), 1.36(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR (75 MHz ; $\left.\mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 174.5(\mathrm{C}), 158.4(\mathrm{C}), 152.8(\mathrm{C}), 139.8(\mathrm{C}), 129.1(\mathrm{CH}), 128.1(\mathrm{CH}), 125.3(\mathrm{CH}), 85.7(\mathrm{C})$, $56.5(\mathrm{CH}), 38.1\left(\mathrm{CH}_{2}\right), 27.8\left(\mathrm{CH}_{3}\right)$. HRMS $\left(\mathrm{ESI}^{+}\right)$: calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3}\left[(\mathrm{M}+\mathrm{H})^{+}\right]: 290.1499$; Found: 290.1500.

tert-butyl 4-oxo-6-phenyltetrahydropyrimidine-1-carboxylate (21).

To a solution of 18 ($60.9 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv.) in ethanol (4.0 mL) at $0^{\circ} \mathrm{C}$ under argon atmosphere was added sodium borohydride ($22.8 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0$ equiv.). The mixture was then heated at $40^{\circ} \mathrm{C}$ for 15 hours. The crude mixture was evaporated under reduced pressure, diluted in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtrated and the solvent was removed under reduced pressure. The product was purified by column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98 / 2\right)$ and isolated as a white solid, $(47.0 \mathrm{mg}$, $0.17 \mathrm{mmol}, 85 \%) . R_{f}=0.10\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 98 / 2\right)$. m.p. $139-140^{\circ} \mathrm{C}$. IR (neat) $v_{\max } 3267,2980$, 2927, 1684, 1657, 1403, 1365, 1154, 765, $698 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 7.76(1 \mathrm{H}, \mathrm{s})$, 7.38-7.26 (5H, m), 5.60-4.90 ($2 \mathrm{H}, \mathrm{CHH}$ and CHCHH , br s), $4.53(1 \mathrm{H}, \mathrm{CHH}, \mathrm{br}$ s), $2.85(1 \mathrm{H}$, $\mathrm{CHCHH}, \mathrm{dd}, J=16.1,6.5 \mathrm{~Hz}), 2.70(1 \mathrm{H}, \mathrm{CHCH} H$, dd, $J=16.1,6.9 \mathrm{~Hz}), 1.33(9 \mathrm{H}, \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz} ; \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 171.7(\mathrm{C}=\mathrm{O}), 153.9(\mathrm{~N}(\mathrm{C}=\mathrm{O}) \mathrm{O}), 142.0(\mathrm{C}, \mathrm{Ar}), 128.8(\mathrm{CH}), 127.7(\mathrm{CH}), 125.8$
 $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}\left[(\mathrm{M}+\mathrm{H})^{+}\right]:$277.1547; Found: 277.1555.

IV-NMR spectra and HPLC chromatograms

Meldrum's acid sodium salt ($\mathbf{4}^{-} \mathrm{Na}^{+}$).
(4.Na+

2-methoxy-6-phenyl-5,6-dihydropyrimidin-4-one (7aa).

1	1	1	T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

2-methylthio-6-phenyl-5,6-dihydropyrimidin-4(3H)-one (7ba).

6-phenyl-2-(pyrazol-1-yl)-5,6-dihydropyrimidin-4-one (7ca).

1				1		1		1	1				1	,			1				1
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

2-methoxy-6-(4-methoxyphenyl)-5,6-dihydropyrimidin-4-one (7ab).

2-methoxy-6-(4-(trifluoromethyl)phenyl)-5,6-dihydropyrimidin-4(3H)-one

 (7ac).

6-(2-bromophenyl)-2-methoxy-5,6-dihydropyrimidin-4(3H)-one (7ad). (

							1													
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

2-methoxy-6-(pyridin-3-yl)-5,6-dihydropyrimidin-4(3H)-one (7ae).

1	1	1	1	1	1	1	1	1	1	1	1	1		1		1	1	1	1	1
210	200	190	180	170	160	150	140	130	120	${ }_{110}$	100	90	80	70	60	50	40	30	20	10

tert-butyl 3-(2-methoxy-5,6-dihydropyrimidin-4-one-6-yl)-indole-1-carboxylate (7ag)

2-methoxy-6-phenethyl-5,6-dihydropyrimidin-4-one (7ah).

6-isobutyl-2-methoxy-5,6-dihydropyrimidin-4-one (7ai).

6-isopropyl-2-methoxy-5,6-dihydropyrimidin-4-one (7aj).

1	1	1	1	1				1	1				1	1	1	1	1				1	
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-

6-cyclohexyl-2-methoxy-5,6-dihydropyrimidin-4-one (7ak).

1	1	1	1	1		1		1	1				1	1	1	1	1	,			1
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

2-methoxy-6-(2-((tert-butoxycarbonyl)amino)ethyl)-5,6-dihydropyrimidin-4one (7al).

6-((2S,5R,6R)-5,6-dimethoxy-5,6-dimethyl-1,4-dioxan-2-yl)-2-methoxy-5,6-dihydropyrimidin-4(3H)-one (7am).

5-(((amino(iminio)methyl)amino)(phenyl)methyl)-2,2-dimethyl-4-oxo-1,3-dioxin-6-olate (10).

10

10

(3R,5S)-3,5-diphenyl-2,3,5,6-tetrahydro oxazolo [3,2-a] pyrimidin-7-one (13a)

1	1	1	1	1		I		1	1		I	1	1	1	1	1	1	1	1	1	1	
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-

(3R,5S)-3-(4-methoxyphenyl)-5-phenyl-2,3,5,6-tetrahydro oxazolo [3,2-a] pyrimidin-7-one (13b).

(3R,5S)-3-phenyl-5-(4-trifluoromethylphenyl)-2,3,5,6-tetrahydro oxazolo [3,2-a] pyrimidin-7-one (13c).

(3R,5R)-5-butyl-3-phenyl-2,3,5,6-tetrahydro oxazolo [3,2-a] pyrimidin-7-one (13n).

(3R,7R)-3,7-diphenyl-2,3,6,7-tetrahydro oxazolo [3,2-a] pyrimidin-5-one (15a)

15a

6-phenyldihydropyrimidine-2,4-dione. (17).
${ }^{1} \mathrm{H}$ NMR

HPLC for (S) enantiomer

Résultats d'intégration

Résultats d'intégration

\#	Nom du pic	Tr.	Aire	\% Aire	Résultats	\% Résultats
1	22,72	17840,40	100,00	0,00	0,00	
SOMME						

HPLC for (R) enantiomer

Résultats d'intégration

\#	Nom du pic	Tr.	Aire	\% Aire	Résultats	\% Résultats
$\mathbf{1}$		19,72	11756,44	49,77	0,00	0,00
$\mathbf{2}$		23,92	11867,40	50,23	0,00	0,00
SOMME			23623,85	$\mathbf{1 0 0 , 0 0}$	$\mathbf{0 , 0 0}$	$\mathbf{0 , 0 0}$

Résultats d'intégration

$\#$	Nom du pic	Tr.	Aire	\% Aire	Résultats	\% Résultats
1		20,03	9274,74	100,00	0,00	0,00
SOMME			9274,74	100,00	0,00	0,00

tert-butyl 2-methoxy-4-oxo-6-phenyl-5,6-dihydropyrimidine-1-carboxylate (18).

$\stackrel{\circ}{-}$

tert-butyl 2-amino-4-oxo-6-phenyl-5,6-dihydropyrimidine-1-carboxylate (20).

tert-butyl 4-oxo-6-phenyltetrahydropyrimidine-1-carboxylate (21).

[^0]: ${ }^{1}$ Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem., 1978, 43, 2923-2925.

[^1]: ${ }^{a}$ Reaction conditions: Meldrum's acid $4(0.10 \mathrm{mmol})$ at $0.10 \mathrm{M}, 24$ hours, $40{ }^{\circ} \mathrm{C}$ with benzaldehyde 5 a (1.0 equiv.), O-methylisourea 9 (1.0 equiv.) and Hünig's base (0.2 equiv.). ${ }^{b}{ }^{1} \mathrm{H}$ NMR yield determined by using $\mathrm{Bn}_{2} \mathrm{O}$ as an internal standard. ${ }^{c}$ Product observable as a mixture of $\Delta^{1,2}: \Delta^{2,3}$ tautomers.

[^2]: ${ }^{a}$ Reaction conditions: Meldrum's acid $4(0.1 \mathrm{mmol})$, benzaldehyde 5a (1.0 equiv.), O-methylisourea hemisulfate salt 1a (1.0 equiv.) and base (1.1 equiv.) in solvent during 24 hours. ${ }^{b 1} \mathrm{H}$ NMR yield determined by using $\mathrm{Bn}_{2} \mathrm{O}$ as an internal standard. ${ }^{c}$ Product observable as a mixture of $\Delta^{1,2}: \Delta^{2,3}$ tautomers.

[^3]: ${ }^{a}$ Reaction conditions: benzylidene Meldrum's acid 6a (0.10 mmol) and (4R)-4-phenyloxazolidin-2-ylidene amine $\mathbf{1 2}$ (1.0 equiv.) in MeCN/ $\mathrm{H}_{2} \mathrm{O}, 9 / 1(0.25 \mathrm{M})$ for 24 hours. ${ }^{b}$ Ratio determined by NMR. ${ }^{c} 100 \%$ conversion by ${ }^{1} \mathrm{H}$ NMR.

[^4]: ${ }^{2}$ Kaumanns, O.; Mayr, H. J. Org. Chem. 2008, 73, 2738-2745.

[^5]: ${ }^{3}$ Strekowski, L.; Watson, R. A.; Faunce, M. A. Synthesis 1987, 579-581.

[^6]: ${ }^{4}$ Nilsson, B. L.; Overman, L. E. J. Org. Chem. 2006, 71, 7706-7714.

[^7]: ${ }^{5}$ Michel, P.; Ley, S. V. Synthesis 2003, 1598-1602.

[^8]: ${ }^{6}$ Agami, C.; Cheramy, S.; Dechoux, L.; Melaimi, M. Tetrahedron 2001, 57, 195-200.

[^9]: ${ }^{7}$ Světlík, J.; Veizerová, L. Helvetica Chimica Acta 2011, 94, 199-205.
 ${ }^{8}$ Aitken, D.; Fernandes, C.; Gauzy, C.; Yang, Y.; Roy, O.; Pereira, E.; Faure, S. Synthesis 2007, 2222-2232.

[^10]: ${ }^{9} R$ and S attributions are made assuming the configuration of the starting material is retained.
 ${ }^{10}$ Paik, S.; Lee, J. Y. Tetrahedron Letters 2006, 47, 1813-1815.

